에러 내성을 갖는 저전력 MAC 연산기 설계

A Design of Low Power MAC Operator with Fault Tolerance

  • 정한샘 (한양대학교 전자컴퓨터통신공학과) ;
  • 구성관 (삼성테크윈 이미징사업부) ;
  • 정기석 (한양대학교 전자컴퓨터통신공학과)
  • Jung, Han-Sam (Dept. of Electronics, Computer & Communication Engineering, Hanyang University) ;
  • Ku, Sung-Kwan (OPTICS & IMAGING DIVISION, Samsung Techwin) ;
  • Chung, Ki-Seok (Dept. of Electronics, Computer & Communication Engineering, Hanyang University)
  • 발행 : 2008.11.25

초록

오늘날 사용되는 휴대용 전자 장치들은 점점 더 강력한 DSP 능력을 요구하고 있다. 때문에 오늘날의 DSP 알고리즘들은 점점 더 그 복잡도가 높아져 가고 있는 추세이다. DSP 알고리즘의 복잡도가 높아져 감에 따라 DSP 디자인에서 결함이 발생할 확률도 높아져 가고 있다. 그렇기 때문에 디자인에서 발생한 결함을 극복할 수 있는 Fault Tolerance 설계의 필요성이 제시된다. 또한 DSP 알고리즘이 휴대용 전자 장치들에서 사용되기 위해서는 기본적으로 저전력 설계가 필요하다. 하지만 Fault Tolerance 기능을 구현하고자 한다면 추가 모듈로 인해 많은 전력소비와 증가하는 회로크기를 감수해야 한다. 이러한 이슈들을 가지고 본 논문에서는 배럴 시프터를 이용하여 구현된 결함 포용성 저전력 MAC 연산기 구조를 제안한다.

As more DSP functionalities are integrated into an embedded mobile device, power consumption and device reliability have emerged as crucial issues. As the complexity of mobile embedded designs increases very rapidly, verifying the functionality of the mobile devices has become extremely difficult. Therefore, designs with error (fault) tolerance are often required since these capabilities will enable the design to operate properly even with some existence of errors. However, designs with fault tolerance may suffer from significant power overhead since fault tolerance is often achieved by resource replication. In this paper, we propose a low power and fault tolerant MAC (multiply-and-accumulate) design. The proposed MAC design is based on multiple barrel shifters since MAC designs with barrel-shifters and adders are known to be excellent in terms of power consumption.

키워드

참고문헌

  1. Young-Geun Lee, Joo-Yul Park, and Ki-Seok Chung, "Design of Low Power MAC Operator with Dual Precision Mode", 13th IEEE conference on RTCSA, pp. 309-315, DAEGU, KOREA, August 2007
  2. D. K. Pradhan, "Fault-Tolerant Computing Theory and Techniques", Prentice Hall, pp. 417-466, 1986
  3. Hassan B. Diab and Albert Y. Zomaya, "Dependable Computing Systems Paradigms, Performance Issues, And Applications", WILEY- Interscience, pp. 213-241, 2005
  4. Barry W. Johnson, "Design and Analysis of Fault Tolerant Digital Systems", Addison Wesley, pp. 169-262, 1989
  5. M. Potkonajak, M. Srivastava, and A. Chandrakasan, "Multiple Constant Multiplications: Efficient and Versatile Framework and Algorithms for Exploring Common Subexpression Eliminiation", IEEE Trans. on CAD of Integrated Circuits and Systems, Vol. 15, No. 2, pp. 151-165, February 1996 https://doi.org/10.1109/43.486662
  6. Chien-Chung Chua, Bah-Hwee Gwee and Joseph S. Chang, "A low-voltage micropower asynchronous multiplier for a multiplierless FIR filter", In Proc. of the 2003 Int'l Symposium on Circuits and Systems, pp. 381-384, May 2003
  7. A. G. Dempster and M. D. Macleod, "Constant integer multiplication using minimum adders", Proc. Inst. Elec. Eng. Circuits and systems, vol. 141, no. 5, pp. 407-413, October 1994
  8. J. C. Laprie, J. Arlat, C. Beounes, and K. Kanoun, "Definition and analysis of hardware- and-software fault-tolerant architectures", IEEE Computer, 23: 39-51, 1990
  9. R. D. Schlichting and F. B. Schneider, "Fail-stop processors: an approach to designing fault- tolerant computing systems", ACM Transactions on Computing Systems, 1: 222-238, 1983 https://doi.org/10.1145/357369.357371