단 채널 GaAs MESFET의 속도 포화영역에서 2차원 전위 도출을 위한 해석적 모델

An analytical model for deriving the 2-D potential in the velocity saturation region of a short channel GaAs MESFET

  • 오영해 (홍익대학교 전자전기공학부) ;
  • 장은성 (홍익대학교 전자전기공학부) ;
  • 양진석 (홍익대학교 전자전기공학부) ;
  • 최수홍 (홍익대학교 전자전기공학부) ;
  • 갈진하 (홍익대학교 전자전기공학부) ;
  • 한원진 (홍익대학교 전자전기공학부) ;
  • 홍순석 (홍익대학교 전자전기공학과 전자공학)
  • Oh, Young-Hae (School of Electronic & Electrical Eng., Hongik Univ.) ;
  • Jang, Eun-Sung (School of Electronic & Electrical Eng., Hongik Univ.) ;
  • Yang, Jin-Seok (School of Electronic & Electrical Eng., Hongik Univ.) ;
  • Choi, Soo-Hong (School of Electronic & Electrical Eng., Hongik Univ.) ;
  • Kal, Jin-Ha (School of Electronic & Electrical Eng., Hongik Univ.) ;
  • Han, Won-Jin (School of Electronic & Electrical Eng., Hongik Univ.) ;
  • Hong, Sun-Suck (Dep. of Electronic & Electrical Eng., Hongik Univ.)
  • 발행 : 2008.11.25

초록

본 논문에서는 단 채널 GaAs MESFET의 포화영역에서의 I-V 특성을 도출하기 위한 해석적 모델을 제안하였다. 기존의 단 채널 GaAs MESFET에 대한 해석이 채널 pinch-off의 개념이 도입되는 모델이었던 반면, 본 논문에서는 저자의 소도 포화 영역이 유한한 채널 폭을 갖으면서 전류 연속 조건을 만족하도록 공핍영역의 2차원 전위 분포 식을 도출하였다. 또한 소도 포화영역의 길이를 채널 전체 길이, 채널 도핑 농도, 게이트 전압 및 드레인 전압의 함수로 도출하여 포화영역에서의 Early 효과를 보다 합리적으로 설명할 수 있음을 보이고 있다.

In this paper, we suggest an analytical model that can derive the I-V characteristics in the saturation region of a short channel GaAs MESFET. Instead of the pinch-off concept that has been used in the conventional models we can derive the two-dimensional potential in the depletion region in order that the velocity saturation region cannot be pinched-off and the current continuity condition can be satisfied. Obtained expression for the velocity saturation length is expressed in terms of the total channel length, channel doping density, gate voltage, and drain voltage. Compared with the conventional channel length shortening models, the present model seems to be considerably accurate and more reasonable in explaining the Early effect.

키워드

참고문헌

  1. P. C. Choa, P. M. Smith, S. Wanuga, W. H. Perkins, and E. D. Wolf, "Channel-Length Effects in Quarter-Micrometer Gate-Length GaAs MESFET's," IEEE Electron Device Lett., vol. 4, no. 9, pp. 326-328, 1983 https://doi.org/10.1109/EDL.1983.25750
  2. P. Pouvil, J. -L. Gautier, and D. Pasquet, "A New Analytical Model for the GaAs MESFET in the Saturation Region," IEEE Trans. Electron Devices, vol. 35, no. 8, pp. 1215-1222, 1988 https://doi.org/10.1109/16.2540
  3. C. -H. Chen, and D. K. Arch, "The Influence of Electric Field and Mobility Profile on GaAs MESFET Characteristics," IEEE Trans. Electron Devices, vol. 36, no. 11, pp. 2405-2414, 1989 https://doi.org/10.1109/16.43660
  4. C. -S. Chang, and D. -Y. S. Day, "Analytic Theory for Current-Voltage Characteristics and Field Distribution of GaAs MESFET's," IEEE Trans. Electron Devices, vol. 36, no. 2, pp. 269- 280, 1989 https://doi.org/10.1109/16.19926
  5. K. L. Tan, H. -K. Chung, and C. H. Chen, "Improvement in Threshold-Voltage Uniformity in Submicrometer GaAs MESFET's Using an Implanted p Layer," IEEE Electron Device Lett., vol. 8, no. 9, pp. 440-442, 1987 https://doi.org/10.1109/EDL.1987.26686
  6. H. L. Grubin, "Large Signal Numerical Simulation of Field Effect Transistors," presented at the Sixth Biennial Conf. on Active Microwave Semicon- ductor Devices and Circuits, Cornell Univ., pp. 16-19, 1977
  7. T. Wada, and J. Frey, "Physical Basis of Short-Channel MESFET Operation," IEEE J. Solid-State Circuits, vol. 14, no. 2, pp. 398-411, 1979 https://doi.org/10.1109/JSSC.1979.1051191
  8. V. K. De, and J. D. Meindl, "Three-Region Analytical Models for MESFET's in Low-Voltage Digital Circuits," IEEE J. Solid-State Circuits, vol. 26, no. 6, pp. 850-858, 1991 https://doi.org/10.1109/4.78274
  9. C. -S. Chang, D. -Y. S. Day, and S. Chan, "An Analytical Two-Dimensional Simulation for the GaAs MESFET Drain-Induced Barrier Lowering: A Short-Channel Effect," IEEE Trans. Electron Devices, vol. 37, no. 5, pp. 1182-1186, 1990 https://doi.org/10.1109/16.108177
  10. C. S. Chang, and H. R. Fetterman, "Electron Drift Velocity versus Electric Field in GaAs," Solid-State Electron., vol. 29, no. 12, pp. 1295-1296, 1986 https://doi.org/10.1016/0038-1101(86)90136-X
  11. A. B. Grebene, and S. K. Ghandhi, "General Theory for Pinched Operation of the Junction-Gate FET," Solid-State Electron., vol. 12, no. 7, pp. 573-589, 1969 https://doi.org/10.1016/0038-1101(69)90112-9
  12. W. R. Curtice, and M. Ettenberg, "A Nonlinear GaAs FET Model for Use in the Design of Output Circuit for Power Amplifiers," IEEE Trans. Microwave Theory Tech., vol. 33, no. 12, pp. 1383-1394, 1985 https://doi.org/10.1109/TMTT.1985.1133229
  13. H. Statz, P. Newman, I. W. Smith, R. A. Pucel, and H, A. Haus, "GaAs FET Device and Circuit Simulation in SPICE," IEEE Trans. Electron Devices, vol. 34, no. 2, pp. 160-169, 1987 https://doi.org/10.1109/T-ED.1987.22902
  14. A. J. McCamant, G. D. McCormack, and D. H. Smith, "An Improved GaAs MESFET Model for SPICE," IEEE Trans. Microwave Theory Tech., vol. 38, no. 6, pp. 822-824, 1990 https://doi.org/10.1109/22.130988
  15. J. Conger. M. S. Shur, and A. Peczalski, "Power Law GaAs MESFET Model," IEEE Trans. Electron Devices, vol. 39, no. 9, pp. 2415-2417, 1992 https://doi.org/10.1109/16.158819
  16. 오영해, 지순구, 서정하, "압전 및 자발 분극을 고려한 단채널 AlGaN/GaN HEMT의 전류-전압 특성에 관한 해석적 모델," 대한전자공학회 논문지, vol. 42, no. 12, pp. 103-112, 2005
  17. 오영해, 서정하, "2차원 Poisson방정식 풀이에 의한 단 채널 InAlAs/InGaAs HEMT의 전류-전압 특성 도출에 관한 해석적 모델," 대한전자공학회 논문지, vol. 44, no. 5, pp. 21-28, 2007
  18. R. A. Pucel, H. A. Haus, and H. Statz, "Signal and Noise Properties of GaAs Miscrowave Field-Effect Transistor," Adv. in Electronics and Electron Phys., vol. 38, pp. 195-263, 1975 https://doi.org/10.1016/S0065-2539(08)61205-6