고급 화장품 소재 개발을 위한 마이크로플루딕스 기술의 잠재적 응용성

A Potential Applicability of Microfluidic Techniques for Fabricating Advanced Cosmetic Materials

  • 박성희 (주)아모레퍼시픽 기술연구원 피부과학연구소) ;
  • 김한곤 ((주)아모레퍼시픽 기술연구원 피부과학연구소) ;
  • 정규혁 (성균관대학교 약학부) ;
  • 김진웅 ((주)아모레퍼시픽 기술연구원 피부과학연구소)
  • 발행 : 2008.12.30

초록

본 총설에서는 마이크로플루딕스 기술에 대한 기초연구를 소개하고, 이 기술을 통하여 화장품산업분야에서 응용성이 큰 동공구조체, 응답성 소재, 캡슐 소재, 다층 콜로이드 구조체 등과 같은 신소재의 합성이 가능함을 기술한다. 마이크로플루딕스 기술이 적용되어 개발된 기능성 신소재들은 그 크기와 내부 모폴로지를 정확하게 피코리터 수준에서 조절할 수 있다. 또한, 소재의 화학조성을 다양하게 임의 조절할 수 있고, 고차 층구조를 갖는 콜로이드 입자나 캡슐의 개발까지도 가능하여 그 응용성은 무궁무진하다고 할 수 있다. 기본적으로 약물전달계, 화학물 분리공정, 바이오센서, 애튜에이터 등의 응용연구에 매우 유용하게 활용될 수 있다. 화장품산업에서도 마이크로플루딕스 기술을 이용하여 고기능성 신소재 개발이나 신유형 화장품 개발이 가능할 것으로 기대되어 더욱 복합적인 연구개발이 진행되어야 할 것이다.

We describe here how we can use microfluidic technologies for fabricating functional materials that could be potentially utilized in cosmetics; these include void structures, functional particulate materials, shell materials, and multi-layered colloids. We can obtain these functional materials as microfluidic approaches provide precise control over both outer dimensions and inner morphology of emulsion drops in picoliter-volume scales with high throughput. We have confirmed that this technique has a great potential to fabricate novel particles and capsules with a variety of chemical compositions as well as higher orders of layers. This microfluidic approach will allow us to develop a lot of new techniques that are useful for a variety of applications, including delivery systems, chemical separations, bio-sensing, actuators, and so on. We do believe that these new techniques will help cosmetic industry not only give rise advanced functional materials and systems but also widen its product categories.

키워드

참고문헌

  1. T. Chovan and A. Guttman, Microfabricated devices in biotechnology and biochemical processing, Trends Biotechnol., 20, 116 (2002) https://doi.org/10.1016/S0167-7799(02)01905-4
  2. G. J. M. Bruin, Recent developments in electrokinetically driven analysis on microfabricated devices, Electrophoresis, 21, 3931 (2000) https://doi.org/10.1002/1522-2683(200012)21:18<3931::AID-ELPS3931>3.0.CO;2-M
  3. R. S. Kane, S. Takayama, P. Ostuni, D. E. Ingber, and G. M. Whitesides, Patterning proteins and cells using soft lithography, Biomaterials, 20, 2363 (1999) https://doi.org/10.1016/S0142-9612(99)00165-9
  4. W. Engl, R. Backov, and P. Panizza, Controlled production of emulsions and particles by milli- and microfluidic techniques, Cur. Opinion Colloid Interf. Sci., 13, 206 (2008) https://doi.org/10.1016/j.cocis.2007.09.003
  5. H. Song, D. L. Chen, and R. F. Ismagilov, Reactions in droplets in microflulidic channels, Angew. Chem. Int. Ed., 45, 7336 (2006) https://doi.org/10.1002/anie.200601554
  6. S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, Droplet microfluidics, Lab Chip, 8, 198 (2008) https://doi.org/10.1039/b715524g
  7. A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J. B. Edel, and A. J. Demello, Microdroplets: a sea of applications?, Lab Chip, 8, 1244 (2008) https://doi.org/10.1039/b806405a
  8. J. Atencia and D. J. Beebe, Controlled microfluidic interfaces, Nature, 437, 648 (2005) https://doi.org/10.1038/nature04163
  9. W. Engl, R. Backov, and P. Panizza, Controlled production of emulsions and particles by milli- and microfluidic techniques, Cur. Opinion Colloid Interf. Sci., 13, 206 (2008) https://doi.org/10.1016/j.cocis.2007.09.003
  10. Y. C. Tan and A. P. Lee, Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system, Lab Chip, 5, 1178 (2005) https://doi.org/10.1039/b504497a
  11. B. R. Saunders and B. Vincent, Microgel particles as model colloids: theory, properties and applications, Adv. Colloid. Interf. Sci., 80, 1 (1999) https://doi.org/10.1016/S0001-8686(98)00071-2
  12. M. Das, H. Zhang, and E. Kumacheva, Microgels: old materials with new applications, Ann. Rev. Mater. Res., 36, 117 (2006) https://doi.org/10.1146/annurev.matsci.36.011205.123513
  13. N. Murthy, Y. X. Thng, S. Schuck, M. C. Xu, and J. M. J. Frechet, A novel strategy for encapsulation and release of proteins: hydrogels and microgels with acid-labile acetal cross-linkers, J. Am. Chem. Soc., 124, 12398 (2002) https://doi.org/10.1021/ja026925r
  14. S. V. Vinogradov, T. K. Bronich, and A. V. Kabanov, Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells, Adv. Drug Deliver. Rev., 54, 135 (2002) https://doi.org/10.1016/S0169-409X(01)00245-9
  15. V. C. Lopez, J. Hadgraft, and M. J. Snowden, The use of colloidal microgels as a (trans)dermal drug delivery system, Int. J. Pharm., 292, 137 (2005) https://doi.org/10.1016/j.ijpharm.2004.11.040
  16. L. Bromberg and V. Alakhov, Effects of polyethermodified poly(acrylic acid) microgels on doxorubicin transport in human intestinal epithelial Caco-2 cell layers, J. Control. Release, 88, 11 (2003) https://doi.org/10.1016/S0168-3659(02)00419-4
  17. D. A. LaVan, D. M. Lynn, and R. Langer, Moving smaller in drug discovery and delivery, Nat. Rev. Drug Discov., 1, 77 (2002) https://doi.org/10.1038/nrd707
  18. S. Nayak, H. Lee, J. Chmielewski, and L. A. Lyon, Folate-mediated cell targeting and cytotoxicity using thermoresponsive microgels, J. Am. Chem. Soc., 126, 10258 (2004) https://doi.org/10.1021/ja0474143
  19. Y. Lu, Y. Mei, M. Ballauff, and M. Drechsler, Thermosensitive core-shell particles as carrier systems for metallic nanoparticles, J. Phys. Chem. B, 110, 3930 (2006) https://doi.org/10.1021/jp057149n
  20. D. E. Bergbreiter, B. L. Case, Y. S. Liu, and J. W. Caraway, Poly(N-isopropylacrylamide) soluble polymer supports in catalysis and synthesis, Macromolecules, 31, 6053 (1998) https://doi.org/10.1021/ma980836a
  21. A. Pich, J. Hain, Y. Lu, V. Boyko, Y. Prots, and H. J. Adler, Hybrid microgels with ZnS inclusions, Macromolecules, 38, 6610 (2005) https://doi.org/10.1021/ma0505272
  22. C. W. Chen, M. Q. Chen, T. Serizawa, and M. Akashi, In situ synthesis and the catalytic properties of platinum colloids on polystyrene microspheres with surface- grafted poly(N-isopropylacrylamide), Chem. Commun., 7, 831 (1998)
  23. K. Iwai, Y. Matsumura, S. Uchiyama, and A. P. de Silva, Development of fluorescent microgel thermometers based on thermo responsive polymers and their modulation of sensitivity range, J. Mater. Chem., 15, 2796 (2005) https://doi.org/10.1039/b502277k
  24. G. E. Morris, B. Vincent, and M. J. Snowden, Adsorption of lead ions onto N-isopropylacrylamide and acrylic acid copolymer microgels, J. Colloid Interf. Sci., 190, 198 (1997) https://doi.org/10.1006/jcis.1997.4843
  25. G. Zenkl, T. Mayr, and I. Khmant, Sugar-responsive fluorescent nanospheres, Macromol. Biosci., 8, 146 (2008) https://doi.org/10.1002/mabi.200700174
  26. T. Hoare and R. Pelton, Engineering glucose swelling responses in poly(N-isopropylacrylamide)-based microgels, Macromolecules, 40, 670 (2007) https://doi.org/10.1021/ma062254w
  27. V. Lapeyre, I. Gosse, S. Chevreux, and V. Ravaine, Monodispersed glucose-responsive microgels operating at physiological salinity, Biomacromolecules, 7, 3356 (2006) https://doi.org/10.1021/bm060588n
  28. A. Jeenanong and H. Kawaguchi, SPR response of stimuli-sensitive microgel on sensor chip, Colloid Surface A, 302, 403 (2007) https://doi.org/10.1016/j.colsurfa.2007.03.008
  29. L. A. Lyon, J. D. Debord, S. B. Debord, C. D. Jones, J. G. McGrath, and M. J. Serpe, Microgel colloidal crystals, J. Phys. Chem. B, 108, 19099 (2004) https://doi.org/10.1021/jp048486j
  30. D. Suzuki, J. G. McGrath, H. Kawaguchi, and L. A. Lyon, Colloidal crystals of thermosensitive, core/shell hybrid microgels, J. Phys. Chem. C, 111, 5667 (2007) https://doi.org/10.1021/jp068535n
  31. S. Q. Xu, J. G. Zhang, C. Paquet, Y. K. Lin, and E. Kumacheva, From hybrid microgels to photonic crystals, Adv. Funct. Mater., 13, 468 (2003) https://doi.org/10.1002/adfm.200304338
  32. F. Ilmain, T. Tanaka, and E. Kokufuta, Volume transition in a gel driven by hydrogen-bonding, Nature, 349, 400 (1991) https://doi.org/10.1038/349400a0
  33. R. Pelton, Temperature-sensitive aqueous microgels, Adv. Colloid. Interfac., 85, 1 (2000) https://doi.org/10.1016/S0001-8686(99)00023-8
  34. C. D. Jones and L. A. Lyon, Shell-restricted swelling and core compression in poly(N-isopropylacrylamide) core-shell microgels, Macromolecules, 36, 1988 (2003) https://doi.org/10.1021/ma021079q
  35. D. J. Gan and L. A. Lyon, Synthesis and protein adsorption resistance of PEG-modified poly(N-isopropylacrylamide) core/shell microgels, Macromolecules, 35, 9634 (2002) https://doi.org/10.1021/ma021186k
  36. D. J. Gan and L. A. Lyon, Interfacial nonradiative energy transfer in responsive core-shell hydrogel nanoparticles, J. Am. Chem. Soc., 123, 8203 (2001) https://doi.org/10.1021/ja015974l
  37. D. J. Gan and L. A. Lyon, Tunable swelling kinetics in core-shell hydrogel nanoparticles, J. Am. Chem. Soc., 123, 7511 (2001) https://doi.org/10.1021/ja010609f
  38. B. Jeong, Y. H. Bae, D. S. Lee, and S. W. Kim, Biodegradable block copolymers as injectable drugdelivery systems, Nature, 388, 860 (1997) https://doi.org/10.1038/42218
  39. H. Matsuoka, K. Fujimoto, and H. Kawaguchi, Stimuli-response of microsphere having poly(Nisopropylacrylamide) shell, Polym. J., 31, 1139 (1999) https://doi.org/10.1295/polymj.31.1139
  40. P. W. Zhu and D. H. Napper, Effect of heating rate on nanoparticle formation of poly(N-isopropylacrylamide)- poly(ethylene glycol) block copolymer microgels, Langmuir, 16, 8543 (2000) https://doi.org/10.1021/la000489+
  41. J. Gao and Z. B. Hu, Optical properties of N-isopropylacrylamide microgel spheres in water, Langmuir, 18, 1360 (2002) https://doi.org/10.1021/la011405f
  42. L. S. Zha, Y. Zhang, W. L. Yang, and S. K. Fu, Monodisperse temperature-sensitive microcontainers, Adv. Mater., 14, 1090 (2002) https://doi.org/10.1002/1521-4095(20020805)14:15<1090::AID-ADMA1090>3.0.CO;2-6
  43. X. C. Xiao, L. Y. Chu, W. M. Chen, S. Wang, and R. Xie, Preparation of submicrometer-sized monodispersed thermoresponsive core-shell hydrogel microspheres, Langmuir, 20, 5247 (2004). https://doi.org/10.1021/la036230j
  44. X. C. Xiao, L. Y. Chu, W. M. Chen, S. Wang, and Y. Li, Positively thermo-sensitive monodisperse core-shell microspheres, Adv. Funct. Mater., 13, 847 (2003) https://doi.org/10.1002/adfm.200304513
  45. K. Shiga, N. Muramatsu, and T. Kondo, Preparation of poly(D,L-lactide) and copoly(lactide-glycolide) microspheres of uniform size, J. Pharm. Pharmacol., 48, 891 (1996) https://doi.org/10.1111/j.2042-7158.1996.tb05995.x
  46. L. Y. Chu, S. H. Park, T. Yamaguchi, and S. Nakao, Preparation of micron-sized monodispersed thermoresponsive core-shell microcapsules, Langmuir, 18, 1856 (2002) https://doi.org/10.1021/la011385h
  47. F. Ikkai, S. Iwamoto, E. Adachi, and M. Nakajima, New method of producing mono-sized polymer gel particles using microchannel emulsification and UV irradiation, Colloid Polym. Sci., 283, 1149 (2005) https://doi.org/10.1007/s00396-005-1271-z
  48. L. Y. Chu, R. Xie, J. H. Zhu, W. M. Chen, T. Yamaguchi, and S. Nakao, Study of SPG membrane emulsification processes for the preparation of monodisperse core-shell microcapsules, J. Colloid Interface Sci., 265, 187 (2003) https://doi.org/10.1016/S0021-9797(03)00350-3
  49. G. M. Whitesides and A. D. Stroock, Flexible methods for microfluidics, Physics Today, 54, 42 (2001)
  50. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis, 21, 27 (2000) https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C
  51. S. L. Anna, N. Bontoux, and H. A. Stone, Formation of dispersions using "flow focusing" in microchannels, Appl. Phys. Lett., 82, 364 (2003) https://doi.org/10.1063/1.1537519
  52. D. R. Link, S. L. Anna, D. A. Weitz, and H. A. Stone, Geometrically mediated breakup of drops in microfluidic devices, Phys. Rev. Lett., 92, 054503 (2004) https://doi.org/10.1103/PhysRevLett.92.054503
  53. K. Ahn, J. Agresti, H. Chong, and D. A. Weitz, Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels, Appl. Phys. Lett., 88, 264105 (2006) https://doi.org/10.1063/1.2218058
  54. J. N. Lee, C. Park, and G. M. Whitesides, Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices, Anal. Chem. 75, 6544 (2003) https://doi.org/10.1021/ac0346712
  55. L. Y. Chu, A. S. Utada, R. K. Shah, J. W. Kim, and D. A. Weitz, Controllable monodisperse multiple emulsions, Angew. Chem. Int. Ed., 46, 8970 (2007) https://doi.org/10.1002/anie.200701358
  56. A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, and D. A. Weitz, Monodisperse double emulsions generated from a microcapillary device, Science, 308, 537 (2005) https://doi.org/10.1126/science.1109164
  57. R. K. Shah, H. C. Shum, A. C. Rowat, D. Lee, J. J. Agresti, A. S. Utada, L. Y. Chu, J. W. Kim, A. Fernandez-Nieves, C. J. Martinez, and D. A. Weitz, Designer emulsions using microfluidics, Materials Today, 11, 18 (2008)
  58. A. S. Utada, L. Y. Chu, A. Fernandez-Nieves, D. L. Link, C. Holtz, and D. A. Weitz, Dripping, jetting, drops, and wetting: the magic of microfluidics, MRS Bull., 32, 702 (2007) https://doi.org/10.1557/mrs2007.145
  59. A. S. Utada, A. Fernandez-Nieves, H. A. Stone, and D. A. Weitz, Dripping to jetting transitions in coflowing liquid streams, Phys. Rev. Lett., 99, 094502 (2007) https://doi.org/10.1103/PhysRevLett.99.094502
  60. A. M. Ganan-Calvo and J. M. Gordillo, Perfectly monodisperse microbubbling by capillary flow focusing, Phys. Rev. Lett., 87, 274501 (2001) https://doi.org/10.1103/PhysRevLett.87.274501
  61. H. M. Wyss, D.L. Blair, J. F. Morris, H. A. Stone, and D. A. Weitz, Mechanism for clogging of microchannels, Phys. Rev. E, 74, 061402 (2006) https://doi.org/10.1103/PhysRevE.74.061402
  62. S. Tomotika, Breaking up of a drop of viscous liquid immersed in another viscous fluid which is extending at a uniform rate, Proc. R. Soc. London, Ser. A, 153, 0302 (1936)
  63. T. R. Powers, D. F. Zhang, R. E. Goldstein, and H. A. Stone, Propagation of a topological transition: the Rayleigh instability, Phys. Fluids, 10, 1052 (1998) https://doi.org/10.1063/1.869650
  64. D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, Continuous-flow lithography for high-throughput microparticle synthesis, Nat. Mater., 5, 365 (2006) https://doi.org/10.1038/nmat1617
  65. J. H. Jang, D. Dendukuri, T. A. Hatton, E. L. Thomas and P. S. Doyle, A route to three-dimensional structures in a microfluidic device: stop-flow interference lithography, Angew. Chem. Int. Ed., 46, 9027 (2007) https://doi.org/10.1002/anie.200703525
  66. M. Seo, Z. H. Nie, S. Q. Xu, M. Mok, P. C. Lewis, R. Graham, and E. Kumacheva, Continuous microfluidic reactors for polymer particles, Langmuir, 21, 11614 (2005) https://doi.org/10.1021/la050519e
  67. S. Q. Xu, Z. H. Nie, M. Seo, P. Lewis, E. Kumacheva, H. A. Stone, P. Garstecki, D. B. Weibel, I. Gitlin, and G. M. Whitesides, Generation of monodisperse particles by using microfluidics: control over size, shape, and composition, Angew. Chem. Int. Ed., 44, 724 (2005) https://doi.org/10.1002/anie.200462226
  68. H. Zhang, E. Tumarkin, R. M. A. Sullan, G. C. Walker, and E. Kumacheva, Exploring microfluidic routes to microgels of biological polymers, Macromolecular Rapid Communications, 28, 527 (2007) https://doi.org/10.1002/marc.200600776
  69. D. Dendukuri, K. Tsoi, T. A. Hatton and P. S. Doyle, Controlled synthesis of nonspherical microparticles using microfluidics, Langmuir, 21, 2113 (2005) https://doi.org/10.1021/la047368k
  70. Z. H. Nie, W. Li, M. Seo, S. Q. Xu, and E. Kumacheva, Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly, J. Am. Chem. Soc., 128, 9408 (2006) https://doi.org/10.1021/ja060882n
  71. R. F. Shepherd, J. C. Conrad, S. K. Rhodes, D. R. Link, M. Marquez, D. A. Weitz, and J. A. Lewis, Microfluidic assembly of homogeneous and janus colloid-filled hydrogel granules, Langmuir, 22, 8618 (2006) https://doi.org/10.1021/la060759+
  72. Y. Hirokawa, H. Jinnai, Y. Nishikawa, T. Okamoto, and T. Hashimoto, Direct observation of internal structures in poly(N-isopropylacrylamide) chemical gels, Macromolecules, 32, 7093 (1999) https://doi.org/10.1021/ma990437v
  73. A. Suzuki, Y. Kobiki, and M. Yamazaki, Effects of network inhomogeneity in poly(N-isopropylacrylamide) gel on its surface structure, Jpn. J. Appl. Phys. Part 1., 42, 2810 (2003) https://doi.org/10.1143/JJAP.42.2810
  74. X. J. Ju, L. Y. Chu, X. L. Zhu, L. Hu, H. Song. and W. M. Chen, Effects of internal microstructures of poly(N-isopropylacrylamide) hydrogels on thermo- responsive volume phase-transition and controlled- release characteristics, Smart Mater. Struct., 15, 1767 (2006) https://doi.org/10.1088/0964-1726/15/6/031
  75. S. Takata, K. Suzuki, T. Norisuye. and M. Shibayama, Dependence of shrinking kinetics of poly(N-isopropylacrylamide) gels on preparation temperature, Polymer, 43, 3101 (2002) https://doi.org/10.1016/S0032-3861(02)00089-7
  76. L. Y. Chu, J. W. Kim, R. K. Shah, and D. A. Weitz, Monodisperse thermoresponsive microgels with tunable volume-phase transition kinetics, Adv. Funct. Mater., 17, 3499 (2007) https://doi.org/10.1002/adfm.200700379
  77. J. W. Kim and A. S. Utada, A. Fernández-Nieves, Z. B. Hu, and D. A. Weitz, Fabrication of monodisperse gel shells and functional microgels in microfluidic devices, Angew. Chem. Int. Ed., 46, 1819 (2007) https://doi.org/10.1002/anie.200604206
  78. B. M. Discher, Y.Y. Won, D.S. Ege, J. C. M. Lee, F. S. Bates, D. E. Discher, and D. A. Hammer, Polymersomes: tough vesicles made from diblock copolymers, Science, 284, 1143 (1999) https://doi.org/10.1126/science.284.5417.1143
  79. A. T. Nikova, V. D. Gordon, G. Cristobal, and D. A. Weitz, Swollen vesicles and multiple emulsions from block copolymers, Macromolecules, 37, 2215 (2004) https://doi.org/10.1021/ma035638k
  80. M. Antonietti and S. Forster, Vesicles and liposomes: a self-assembly principle beyond lipids, Adv. Mater., 15, 1323 (2003) https://doi.org/10.1002/adma.200300010
  81. B. Sun and D. T. Chiu, Determination of the encapsulation efficiency of individual vesicles using single- vesicle photolysis and confocal single-molecule detection, Anal. Chem., 77, 2770 (2005) https://doi.org/10.1021/ac048439n
  82. M. Glavas-Dodov, E. Fredro-Kumbaradzi, K. Goracinova, and A. A. Hincal, The effects of lyophilization on the stability of liposomes containing 5-FU, Int. J. Pharm., 291, 79 (2005) https://doi.org/10.1016/j.ijpharm.2004.07.045
  83. Y. C. Tan, K. Hettiarachchi, M. Siu, and Y. P. Pan, Controlled microfluidic encapsulation of cells, proteins, and microbeads in lipid vesicles, J. Am. Chem. Soc., 128, 5656 (2006) https://doi.org/10.1021/ja056641h
  84. H. C. Shum, J. W. Kim, and D. A. Weitz, Microfluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability, J. Am. Chem. Soc., 130, 9543 (2008) https://doi.org/10.1021/ja802157y