References
- Kimura, H. (2002), Hydrogen sulfide as a neuromodulator, Mol. Neurobiol. 26(1), 13-19 https://doi.org/10.1385/MN:26:1:013
- Eto, K., T. Asada, K. Arima, T. Makifuchi, and H. Kimura (2002), Brain hydrogen sulfide is severely decreased in Alzheimer's disease, Biochem. Biophys. Res. Commun. 293(5), 1485-1488 https://doi.org/10.1016/S0006-291X(02)00422-9
- Eto, K. and H. Kimura (2002), The production of hydrogen sulfide is regulated by testosterone and S-adenosyl-L-methionine in mouse brain, J. Neurochem. 83(1), 80-86 https://doi.org/10.1046/j.1471-4159.2002.01097.x
-
Chen, X., K. H. Jhee, and W. D. Kruger (2004), Production of the neuromodulator
$H_2B$ by cystathionine${\beta}$ -synthase via the condensation of cysteine and homocysteine, J. Biol. Chem. 279(50), 52082-52086 https://doi.org/10.1074/jbc.C400481200 -
Jhee, K. H., H. N. Cho, S. A. Yang, and I. S. Lee (2007), Biochemical characteristics for the cofactor free mutant of yeast homocysteine catalyzing enzyme, cystathionine
${\beta}$ -synthase, Kor. J. Microbiol. Biotechnol. 35(3), 196-202 - Shan, X. and W. D. Kruger (1998), Correction of disease-causing CBS mutation in yeast, Nat. Genet. 19, 91-93 https://doi.org/10.1038/ng0598-91
- Spiropoulos, A. and L. F. Bisson (2000), MET17 and hydrogen sulfide formation in Saccharomyces cerevisiae, Appl. Environ. Microbiol. 66(10), 4421-4426 https://doi.org/10.1128/AEM.66.10.4421-4426.2000
- Mendes-Ferreira, A., A. Mendes-Faia, and C. Leao (2004), Growth and fermentation patterns of Saccharomyces cerevisiae under different ammonium concentrations and its implications in winemaking industry, J. Applied Microbiology 97, 540-545 https://doi.org/10.1111/j.1365-2672.2004.02331.x
- Matthews, A., A. Grimaldi, M. Walker, E. Bartowsky, P. Grbin, and V. Jiranek (2004), Lactic acid bacteria as a potential source of enzymes for use in vinification, Appl. Environ. Microbiol. 70(10), 5715-5731 https://doi.org/10.1128/AEM.70.10.5715-5731.2004
-
Edwards, C. G. and J. C. Bohlscheid (2007), Impact of pantothenic acid addition on
$H_2S$ production by Saccharomyces under fermentative conditions, Enzyme and Microbial Technology 41, 1-4 https://doi.org/10.1016/j.enzmictec.2007.03.002 - Linderholm, A. L., C. L. Findleton, G. Kumar, Y. Hong, and L. F. Bisson (2008), Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae, Appl. Environ. Microbiol. 74(5), 1418-1427 https://doi.org/10.1128/AEM.01758-07
- Hansen, R., S. Y. Pearson, J. M. Brosnan, P. G. Meaden, and D. J. Jamieson (2006), Proteomic analysis of a distilling strain of Saccharomyces cerevisiae during industrial grain fermentation, Appl. Biochem. Biotech. 72, 116-125
- Trabalzini, L., A. Paffetti, A. Scaloni, F. Talamo, E. Ferro, G. Coratza, L. Bovalini, P. Lusini, P. Martelli, and A. Santucci (2003), Proteomic response to physiological fermentation stresses in a wild-type wine strain of Saccharomyces cerevisiae, Biochem. J. 370, 35-46 https://doi.org/10.1042/BJ20020140
- Linderholm, A. L., T. L. Olineka, Y. Hong, and L. F. Bisson (2006), Allele diversity among genes of the sulfate reduction pathway in wine strains of Saccharomyces cerevisiae, Am. J. Enol. Vitic. 57(4), 431-440
- Ono, B. I., T. Hazu, S. Yoshida, T. Kawato, S. Shinoda, J. Brzvwczy, and A. Paszewski (1999), Cysteine biosynthesis in Saccharomyces cerevisiae: a new outlook on pathway and regulation, Yeast 15(13), 1365-1375 https://doi.org/10.1002/(SICI)1097-0061(19990930)15:13<1365::AID-YEA468>3.0.CO;2-U
- Swiegers, J. H. and I. S. Pretorius (2007), Modulation of volatile sulfur compounds by wine yeast, Appl. Microbiol. Biotechnol. 74, 954-960 https://doi.org/10.1007/s00253-006-0828-1
- D'Andrea, R., Y. Surdin-Kerjan, G. Pure, and H. Cherest (1987), Molecular genetics of met17 and met25 mutants of Saccharomyces cerevisiae: intragenic complementation between mutations of a single structural gene, Mol. Gen. Genet. 207, 165-170 https://doi.org/10.1007/BF00331505
-
Jhee, K. H., P. McPhie, and E. W. Miles (2000), Domain architecture of the heme-independent yeast cystathionine
${\beta}$ -synthase provides insights into mechanisms of catalysis and regulation, Biochemistry 39(34), 10548-10556 https://doi.org/10.1021/bi001020g -
Kruger, W. D. and D. R. Cox (1994), A yeast system for expression of human cystathionine
${\beta}$ -synthase: structural and functional conservation of the human and yeast genes, Proc. Natl. Acad. Sci. 91, 6614-6618 - Bradford, M. M. (1976), A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
- Muunchbach, M., M. Quadroni, G. Miotto, and P. James (2000), Quantitation and facilitated de novo sequencing of proteins by isotopic N-terminal labeling of peptides with a fragmentation-directing moiety, Anal. Chem. 72, 4047-4057 https://doi.org/10.1021/ac000265w
- Yamagata S. (1976), O-Acetylserine and O-acetylhomoserine sulfhydrylase of yeast. Subunit structure, J. Biochem. 80(4), 787-797 https://doi.org/10.1093/oxfordjournals.jbchem.a131339
- Strambini, G. B., P. Cioni, and P. F. Cook (1996), Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydrylase reaction pathway, Biochemistry 35(25), 8392-8400 https://doi.org/10.1021/bi952919e
- Szabo, C. (2007), Hydrogen sulphide and its therapeutic potential, Nat. Rev. Drug. Discov. 6(11), 917-935 https://doi.org/10.1038/nrd2425