유류 오염 토양에서 분리된 Rhodococcus fascians 를 이용한 토양 column에서의 JP-8의 분해

Biodegradation of JP-8 in soil column by Rhodococcus fascians isolated from petroleum contaminated soil

  • Park, Bong-Je (Department of Biological Engineering, Inha University) ;
  • Noh, Yong-Ho (Department of Biological Engineering, Inha University) ;
  • Yun, Hyun-Shik (Department of Biological Engineering, Inha University)
  • 발행 : 2008.12.31

초록

본 실험에 사용된 균주는 유류에서 오염된 지역의 토양 시료로부터 직접 분리 하였는데, 이를 액체 배지에서의 성능 시험을 통해 효과를 확인 후 토양 column에 적용하였다. 토양 column에서의 JP-8 분해는 통기에 의한 자연적인 분해와 미생물에 의해 분해되는 것으로 나뉠 수 있다. 토양 내에 접종된 Rhodococcus fascians이 통기를 시키지 않을 경우에도 토양중의 JP-8의 농도가 감소하여 R. fascians의 JP-8 분해가 통기에 상관없이 이루어지는 것을 알 수 있었다. 통기를 시킬 경우 R. fascians를 접종한 경우에 토양중의 JP-8의 70%가 분해되었다. 토양에서 R. fascians의 생장에 작용할 수 있는 질소원을 첨가한 경우 JP-8의 분해율이 75%로 증가하였다. R. fascians에 의한 JP-8의 분해는 세포의 생장과 밀접하게 관련이 있어서 JP-8의 분해율 향상을 위해서는 R. fascians의 증가가 중요함을 알 수 있었다.

The environmental contamination by organic pollutants is a widespread problem. The most widely distributed pollution can be attributed to oil contamination. Bioremediation, the use of microorganism or microbial processes to degrade environmental contaminant, is one of the new technologies. The objective of the present study is to study the degradation of JP-8 in soil by microorganism. The degradation of JP-8 was analysed by TPH using gas chromatography. Rhodococcus fascians isolated from the petroleum contaminated site was applied for the degradation of JP-8 in the soil column system. Air flow rate of 30 ml/min was sufficient to degrade JP-8 in the soil column as much as 70% of JP-8 in the soil column. The addition of nitrogen source resulted in the increase in JP-8 degradability to 75% of JP-8 and the C:N ratio for JP-8 degradation was 100:10.

키워드

참고문헌

  1. Marin, M., A. Pedregosa, S. Rios, L. Ortiz, and F. Laborda (1995), Biodegradation of diesel and heating oil by Acinetobacter calcoaceticus MM5; its possible applications on bioremediation, Inter. Biodet. Biodeg. 269-285
  2. http://www.pressian.com
  3. http://www.hani.co.kr
  4. http://www.seoul.co.kr
  5. Stoica, B. A., A. H. Boulares, D. S. Rosenthal, S. Iyer, I. D. G. Hamilton, and M. E. Smulson (2001), Mechanisms of JP-8 jet fuel toxicity. I. Induction of apoptosis in rat lung epithelial cells, Toxicol. Appl. Pharm. 171, 94-106 https://doi.org/10.1006/taap.2000.9108
  6. Liu, S. and J. D. Pleil (2001), Optimized determination of trace jet fuel volatile organic compounds in human blood using in-field liquid-liquid extraction with subsequent laboratory gas chromatographicmass spectrometric analysis and on-column large-volume injection, J. Chrom. B. 752, 159-171 https://doi.org/10.1016/S0378-4347(00)00537-5
  7. Aheng, A., G. Breedveld, and P. Aagaard (2001), Biodegradation of soluble aromatic compounds of jet fuel under anaerobic conditions: laboratory batch experiments, Appl. Microbiol. Biotechnol. 57, 572-578 https://doi.org/10.1007/s002530100805
  8. Kanikkannan, N., B. R. Locke, and M. Singh (2002), Effect of jet fuels on the skin morphology and irritation in hairless rats, Toxicol. 175, 35-47 https://doi.org/10.1016/S0300-483X(02)00087-2
  9. Mcdougal, J. N., D. L. Pollard, W. Weisman, C. M. Garrett, and T. E. Miller (2000), Assessment of skin absorption and penetration and JP-8 jet fuel and its components, Toxicol. Sci. 55, 247-255 https://doi.org/10.1093/toxsci/55.2.247
  10. Hwang, E. Y., W. Namkoong, and J. S. Park (2000), Effect of environmental parameters on the degradation of petroleum hydrocarbons in soil, J. KoSES. 2, 85-96
  11. Boopathy, R. (2000), Factors limiting bioremediation technologies, Biores. Technol. 74, 63-67 https://doi.org/10.1016/S0960-8524(99)00144-3
  12. Loser, C., A. Zehnsdort, and U. Stottmeister (1998), Microbial degradation of hydrocarbons in soil during aerobic/anaerobic changes and under purely aerobic conditions. Appl. Microbiol. Biotechnol. 49, 631-636 https://doi.org/10.1007/s002530051225
  13. Kim, S. C., W. Namkoong, and D. W. Park (1998), Effects of initial concentration and nutrients in treatment of petroleum hydrocarbon contaminated soils using a slurry-phase bioreactor, J. KoSES. 3, 45-53
  14. La, H. J., S. W. Chang, and S. J. Lee (2000), Substrate interactions on biodegradation of benzene, toluene, ethylbenzene and xylene isomers (BTEX) by indigenous soil microorganisms, J. KSEE. 22(2), 375-383
  15. Oh, K. T., Y. W. Lee, M. Kubo, S. J. Kim, and S. Y. Chung (2000), Isolation, identification and characterization of bacteria degrading crude oil, J. KSEE. 22(10), 1851-1859
  16. Ko, S. O. and S. P. Yoon (2000), Use of biosurfactant for the removal of organic pollutants in soil or groundwater, J. KSEE. 22(2), 193-201
  17. Choi, H. C., D. Y. Yu, H. N. Lim, and K. S. Kim (2000), Ozone- Enhanced Remediation of Diesel-Contaminated Soil : A Column Study, J. KSEE. 22(10), 1825-1832
  18. Nam, B. H., B. J. Park, and H. S. Yun (2008), Biodegradation of JP-8 by Rhodococcus fascians isolated from petroleum contaminated soil, K. Chem. Eng. Res. 46, 819-823
  19. Widrig, D. L. and J. F. Manning, Jr. (1995), Biodegradation of No. 2 diesel fuel in the vadose zone: a soil column study, Environ. Toxicol. Chem. 14, 1813-1822 https://doi.org/10.1897/1552-8618(1995)14[1813:BONDFI]2.0.CO;2
  20. Boopathy, R., D. L. Widrig, and J. F. Manning (1997), In situ bioremediation of explosives contaminated soil: a soil column study, Biores. Technol. 59, 169-176 https://doi.org/10.1016/S0960-8524(96)00152-6
  21. Atlas, R. M. (1995), Petroleum biodegradation and oil spill bioremediation, Marine Poll. Bull. 31, 178-182 https://doi.org/10.1016/0025-326X(95)00113-2
  22. U. S. EPA (1984), Guidelines establishing test procedures for the analysis of pollutants under the clean water act; Final rule and interim final rule and proposed rule, 40 CFR part 136
  23. U. S. EPA (1984), Interlaboratory comparison study : Methodsforvolatile and semi-volatile compounds, Environmental monitering system laboratory, Office of research and development, Las vegas, NV, EPA 600/4-84-027