DOI QR코드

DOI QR Code

에어로졸성막법에 의해 제작된 Bi:YIG 막에 미치는 에어로졸유량의 영향

Effect of Carrier Gas Flow Rate on Magnetic Properties of Bi:YIG Films Deposited with Aerosol Deposition Method

  • 신광호 (경성대학교 멀티미디어통신공학과)
  • Shin, Kwang-Ho (Department of Multimedia Communication Engineering, Kyungsung University)
  • 발행 : 2008.02.29

초록

본 연구에서는 Bi:YIG($Bi_{0.5}Y_{2.5}Fe_5O_{12}$) 막을 에어로졸 성막법을 이용하여 제작함에 있어서, 에어로졸을 구성하는 수송가스의 유량이 막의 자기적 특성과 광학적인 특성에 대하여 분석하였다. 직경 $100{\sim}500$ nm 의 Bi:YIG 분말을 질소 가스를 수송가스로 사용하여 성막을 실시하였고, 이 때, 수송가스의 유량은 0.5 l/min${\sim}10$ l/min 사이에서 변화시켰다. 수송가스의 유량이 증가할수록 Bi:YIG 막의 보자력은 51 Oe에서 37 Oe까지 지수함수적으로 감소하였다. 이것은 충돌에너지가 증가함에 따라 막내부 혹은 막표면의 결함이 감소하였기 때문이라고 고찰되었다. 포화자화는 유량이 증가할수록 감소하였는데, 이는 충돌에너지가 강해짐에 따라 결정이 왜곡되는 힘을 받았기 때문이라고 고찰되었다.

Bismuth-substituted yttrium iron garnet(Bi:YIG) films, which show excellent magnetic and magneto-optical properties as well as low optical losses by optimizing their deposition and post-annealing condition, have been attracting great attention in optical device research area. In this study, the Bi:YIG thick films were deposited with the aerosol deposition method for the final purpose of applying them to optical isolators. Since the aerosol deposition is based on the impact adhesion of sub-micrometer particles accelerated by a carrier gas to a substrate, the flow rate of carrier gas, which is in proportion to mechanically collision energy, should be treated as an important parameter. The Bi:YIG($Bi_{0.5}Y_{2.5}Fe_5O_{12}$) particles with $100{\sim}500$ nm in average diameter were carried and accelerated by nitrogen gas with the flow rate of 0.5 l/min${\sim}$10 l/min. The coercive force decreased from 51 Oe to 37 Oe exponentially with increasing gas flow rate. This is presumably due to the fact that the optimal collision energy results in reduction of impurity and pore, which makes the film to be soft magnetically. The saturation magnetization decreased due to crystallographical distortion of the film with increasing gas flow rate.

키워드

참고문헌

  1. 奧田高士, 日本應用磁氣學會誌, 11, 147 (1987)
  2. O. Kamada, H. Minemoto, and S. Ishizuka, J. Appl. Phys., 61, 3268 (1987) https://doi.org/10.1063/1.338877
  3. H. Takeuchi, Jpn. J. Appl. Phys., 14, 1903 (1975) https://doi.org/10.1143/JJAP.14.1903
  4. S. Wittekoek, T. Popma, J. Robertson, and P. Bongers, Phys. Rev., B12, 2777 (1975)
  5. J. W. Nielsen and E. F. Dearborn, J. Phys. Chem. Solid., 5, 202 (1958) https://doi.org/10.1016/0022-3697(58)90068-4
  6. J. Bahl, Microwave Solid State Circuit Design, John Wiley & Sons Inc., 325(1998)
  7. Y. Konishi, Microwave Integrated Circuit, Marcel Dekker Inc., 550 (1991)
  8. T. Takayama, K. Nakamura, M. Yayoi, M. Inoue, T. Fujii, M. Abe, and K. Arai, J. Magn. Soc. Jpn., 24, 391 (2000) https://doi.org/10.3379/jmsjmag.24.391
  9. D. S. Todorovsky, R. V. Todorovska, and St. Groudeva-Zotova, Materials Letter, 55, 41 (2002) https://doi.org/10.1016/S0167-577X(01)00616-4
  10. J. Akedo and M. Lebedev, Appl. Phys. Lett., 77, 1710 (2000) https://doi.org/10.1063/1.1309029
  11. J. Akedo, N. Minami, K. Fukuda, M. Ichiki, and R. Maeda, Ferroelectrics, 231, 285 (1999) https://doi.org/10.1080/00150199908014545
  12. M. Lebedev, J. Akedo, K. Mori, and T. Eiju, J. Vac. Sci. Technol. A, 18, 563 (2000) https://doi.org/10.1116/1.582226
  13. M. Mizoguchi, H. Uchida, K. H. Shin, J. Akedo, and M. Inoue, International Conference on Magnetism, Kyoto, Japan, 231 (2006)
  14. K. H. Shin, M. Mizoguchi, and M. Inoue, Journal of Magnetics, 12, 129 (2007) https://doi.org/10.4283/JMAG.2007.12.3.129
  15. http://www.corning.com/
  16. E. E. Anderson, Physical Review, 134, A1581 (1993) https://doi.org/10.1103/PhysRev.134.A1581
  17. http://www.engineeringtoolbox.com/specific-heat-solids-d_154.html
  18. 한봉희, X선회절의 기초, 동명사, 234 (1983)
  19. K. H. Shin, M. Muzoguchi, and M. Inoue, J. of Magntics, 12, 129 (2007) https://doi.org/10.4283/JMAG.2007.12.3.129
  20. H. Masuda, K. Higashitani, and H. Yoshida, Powder Technology Handbook, 183 (2006)
  21. K. H. Shin, J. of Magnetics, submitted (2008)