달천 폐광산 지역에서 광미적재지와 기반암 지하수의 수질특성 연구

Characteristics of Groundwater Quality in Bedrock and Tailing Dumps at the Abandoned Dalcheon Mine Area

  • 양성일 (부경대학교 환경지질과학과) ;
  • 강동환 (부경대학교 지질환경연구소) ;
  • 김태영 (부경대학교 환경지질과학과) ;
  • 정상용 (부경대학교 환경지질과학과) ;
  • 김민철 (한국농촌공사 환경지질처)
  • Yang, Sung-Il (Department of Environmental Geosciences, Pukyong National University) ;
  • Kang, Dong-Hwan (Institute of Environmental Geosciences of Pukyong National University) ;
  • Kim, Tae-Yeong (Department of Environmental Geosciences, Pukyong National University) ;
  • Chung, Sang-Yong (Department of Environmental Geosciences, Pukyong National University) ;
  • Kim, Min-Chul (Environmental Geology Team, Korea Rural Community & Agriculture Corporation)
  • 발행 : 2008.02.28

초록

본 연구에서는 달천 폐광산 지역 내 25개 지점에서 현장수질(pH, Eh)을 측정되었고, 41개 지점에서 지하수를 채수하여 주이온 성분을 분석되었다. pH와 Eh성분은 모두 사문암 지역에서 가장 높았으며, pH는 약알칼리성에서 중성의 범위로 나타났다. 연구지역 내 지하수는 탄산염암과의 반응에 의한 산화 환원 환경이 지배적이었으며, 다른 암종에 의한 영향은 매우 적은 것으로 나타났다. 연구지역의 지하수 중 양이온은 $Ca^{2+},\;Mg^{2+}$, 음이온은 $SO_4^{2-}$ 성분이 높게 나타났다. 이는 탄산염암과 사문암, 유비철석과 황철석에 함유된 황 성분이 지하수에 다량 용해되었기 때문이다. 지하수내 이온성분 사이의 상관계수는 광미적재지에서 $Ca^{2+}$$SO_4^{2-}$ 성분이 0.95, $Ca^{2+}$$Mg^{2+}$ 성분이 0.86, $Mg^{2+}$$SO_4^{2-}$ 성분이 0.85로서 높게 나타났다. 또한 기반암 지하수에서는 $Mg^{2+}$$SO_4^{2-}$ 성분이 0.86, $Ca^{2+}$$SO_4^{2-}$ 성분이 0.68 정도로 나타났다. 양이온 중 $Ca^{2+}$ 성분이 광미적재지에서 $46.85\sim323.58mg/L$, 기반암에서 $3.18{\sim}207.20mg/L$로서 가장 넓은 농도 범위를 나타내었으며, 음이온 중 $SO_4^{2-}$ 성분이 광미적재지에서 $21.54{\sim}1673.17mg/L$, 기반암은 $2.04{\sim}1024.64mg/L$로 가장 넓은 농도 범위를 나타내었다. 대수층 매질 종류에 따른 파이퍼 다이아그램 분석 결과, 광미적재지는 Ca-$SO_4$형, 사문암 지역은 Mg-$SO_4$형과 Mg-$HCO_3$형, 탄산염암 지역은 Ca-$HCO_3$형, 혼펠스 지역은 Na-K형과 $CO_3+HCO_3$형이 우세한 것으로 나타났다. 본 연구를 통해 달천 폐광산 지역의 광미적재지에서 $Ca^{2+},\;Mg^{2+}$$SO_4^{2-}$ 성분이 지하수에 다량 용해되어 지하수의 주 흐름 방향에 위치한 기반암 지하수에 유입되었음을 알 수 있었다.

pH and Eh were measured at 25 points in the abandoned Dalcheon mine. And, major ion components $(Na^+,\;K^+,\;Ca^{2+},\;Mg^{2+},\;Cl^-,\;SO_4^{2-},\;CO_3^{2-},\;HCO_3^-)$ were analyzed through groundwater sampling at 41 points. pH and Eh were measured the highest concentration in serpentinite area. And, pH was between weak alkaline and intermediate values in study area. Groundwater in study area was dominated oxidation-reduction environment caused by reaction with carbonate rock. Because sulfur components contained in carbonate, serpentinite, arsenopyrite and pyrite was dissolved by groundwater, $SO_4^{2-}$ component was high in study area. And $Ca^{2+},\;Mg^{2+}$ of cations were high. Correlation coefficients of ion components in tailing dumps were 0.95 between $Ca^{2+}\;and\;SO_4^{2-}$, 0.86 between $Ca^{2+}\;and\;Mg^{2+}$, 0.85 between $Mg^{2+}\;and\;SO_4^{2-}$. Correlation coefficients of ion components in bedrock were 0.86 between $Mg^{2+}\;and\;SO_4^{2-}$, 0.68 between $Ca^{2+}\;and\;SO_4^{2-}$. Concentration range of $Ca^{2+}$ in tailing dumps was $6.85{\sim}323.58mg/L,\;and\;3.18{\sim}207.20mg/L$ in bedrock. Concentration range of $SO_4^{2-}$ in tailing dumps was $21.54{\sim}1673.17mg/L,\;and\;2.04{\sim}1024.64mg/L$ in bedrock. By the result of Piper diagram analysis with aquifer material, groundwater in tailing dumps was $Ca-SO_4$ type. Groundwater quality types with bedrock material were Mg-$SO_4$ and Mg-$HCO_3$ types in serpentinite area, Ca-$HCO_3$ type in carbonate area, Na-K and $CO_3+HCO_3$ types in hornfels, respectively. As a result of this study, groundwater in tailing dumps were dissolved $Ca^{2+},\;Mg^{2+}\;and\;SO_4^{2-}$ components with high concentration. Also, these ion components were transported into bedrock aquifer.

키워드

참고문헌

  1. Appelo, C.A.J. and Postma, D. (2006) Geochemistry, groundwater and pollution, Balkema, 649p
  2. Bass Backing, L.G.M., Kaplan, I.R. and Moore, D. (1960) Limits of the natural environment in terms of pH and oxidation-reduction potentials, The Journal of Geology, v. 68, p. 243-284 https://doi.org/10.1086/626659
  3. Benjamin, M.M. (2002) Water chemistry, McGRAWHILL, 668p
  4. Brown, A.C. (2006) Close linkage of copper (and uranium) transport to diagenetic reddening ofupstreambasin sediments for sediment-hosted stratiform copper (and roll-type uranium) mineralization, Journal of Geochemical Exploration v. 89, p. 23-26 https://doi.org/10.1016/j.gexplo.2005.11.008
  5. Choi, S.G. (1983) Skarn evolution and iron-tungsten mineralization and the associated polymetallic mineralization at the Ulsan mine, Republic of Korea. Unpub. Ph. D. Dissertation, Waseda Uni., 271p
  6. Frape, S. K., Fritz, P. and McNutt, R. H. (1984) Waterrock interaction and chemistry of groundwaters from the Canadian Shield, Geochimica et Cosmochimica Acta., v. 48, p. 1617-1627 https://doi.org/10.1016/0016-7037(84)90331-4
  7. Hwang, J. (2002) Geochemistry of groundwater in limestone and granite of Hwanggangri fluorite mineralized area, Jour. Korean Earth Science Society, v. 23, p. 486- 493
  8. Im, H.C. (2004) A study on the quality of groundwater in Sahagy, Busan, Korea, J Korean Geophysical Soc., v. 7, p. 217-224
  9. Jeong, C.H., Kim, S.J. and Koh, Y.K. (1994) Formation of clay minerals by water-rock interaction in the fracture of Gneiss, J. Miner. Soc. Korea, v. 7, p. 49-61
  10. Jun, K.S., Lee, C.H., Won, Y.S., Jeung, J.W., Park, B.S. and Shin, D.G. (1999) Heavy metal concentrations in soils and stream around the abandoned mine land, J. of the Korean Environmental Sciences Society, v. 8(2), p. 197-204
  11. Kim, J.Y., Chon, H.T. and Oh, D.G. (1995) Neutralization Processes of acid mine drainage(AMD) from the abandoned Donghae coal mine, Journal of the Korean Society of Groundwater Environment, v. 2, p. 38-47
  12. Kim, K.H., Park, J.K., Yang, J.M. and Hiroshi, S. (1993) A study on Serpentinization of serpentinites from the Ulsan iron mine, Jour. Korean Inst. Mining Geol., v. 26, p. 267-278
  13. Kim, K.H., Park, J.K., Yang, J.M. and Yoshida, N. (1990) Petrogenesis of the carbonite and serpentinite rocks from the Ulsan iron mine, Jour. Geol. Soc. Korea, v. 26, p. 407-417
  14. Koh, Y.K., Yun, S.T., Kim, C.S., Choi, H.S. and Kim, G.Y. (1999) Geochemical evolution of CO2-rich groundwater in the Jungwon area, Econ. Environ. Geo., v. 32, p. 469-483
  15. Koh, S.M., Park, C.K. and Soh, W.J. (2006) Preliminary study on the formation environment of serpentinite occurring in Ulsan area, J. Miner. Soc. Korea, v. 19, p. 325-336
  16. Korea Rural community & Agriculture corporation. (2004) soil contamination precision investigation and test of construction method at new apartment construction area in Dalcheon-dong, Buk-gu, Ulsan metropolitan city, 322p
  17. Lee, P.K. and Yu, Y.H. (2002) The effects of carbonate minerals in gully-pot sediment on the leaching behavior of heavy metals under acidified environment, Econ. Environ. Geol., v. 35, p. 257-271
  18. Lee, J.Y. and Lee, I.H. (1995) A geochemical study on the behaviors of major and trace elements in the Ulsan granite and its contact serpentinite, Econ. Environ. Geol., v. 28, p. 53-67
  19. Lee, Y.D. (2001) Characteristics of groundwater quality by elevation in Cheju island, Journal of the KoSES, v. 5, p. 65-75
  20. Park, M.E., Sung, K.Y., Lee, M.H., Lee, P.K. and Kim, M.C. (2005) Effects of pH-Eh on natural attenuation of soil contaminated by arsenic in the Dalcheon mine area, Ulsan, Korea, Econ. Environ. Geol., v. 38, p. 513-523
  21. Robins. N. S. (2002) Groundwater quality in Scotland : major ion chemistry of the key groundwater bodies, The Science of the Total Environment, v. 294, p. 41-56 https://doi.org/10.1016/S0048-9697(02)00051-7
  22. Yun, S.T., Chae, G.T., Koh, Y.K., Kim, S.R., Choi, B.Y., Lee, B.H. and Kim, S.Y. (1998) Hydrogeochemical and environmental isotope study of groundwater in the Pungki area, Journal of the Korean Society of Groundwater Environment, v. 5, p. 177-192