• Title/Summary/Keyword: Tailing dumps

Search Result 9, Processing Time 0.027 seconds

Characteristics of Groundwater Quality in Bedrock and Tailing Dumps at the Abandoned Dalcheon Mine Area (달천 폐광산 지역에서 광미적재지와 기반암 지하수의 수질특성 연구)

  • Yang, Sung-Il;Kang, Dong-Hwan;Kim, Tae-Yeong;Chung, Sang-Yong;Kim, Min-Chul
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.47-56
    • /
    • 2008
  • pH and Eh were measured at 25 points in the abandoned Dalcheon mine. And, major ion components $(Na^+,\;K^+,\;Ca^{2+},\;Mg^{2+},\;Cl^-,\;SO_4^{2-},\;CO_3^{2-},\;HCO_3^-)$ were analyzed through groundwater sampling at 41 points. pH and Eh were measured the highest concentration in serpentinite area. And, pH was between weak alkaline and intermediate values in study area. Groundwater in study area was dominated oxidation-reduction environment caused by reaction with carbonate rock. Because sulfur components contained in carbonate, serpentinite, arsenopyrite and pyrite was dissolved by groundwater, $SO_4^{2-}$ component was high in study area. And $Ca^{2+},\;Mg^{2+}$ of cations were high. Correlation coefficients of ion components in tailing dumps were 0.95 between $Ca^{2+}\;and\;SO_4^{2-}$, 0.86 between $Ca^{2+}\;and\;Mg^{2+}$, 0.85 between $Mg^{2+}\;and\;SO_4^{2-}$. Correlation coefficients of ion components in bedrock were 0.86 between $Mg^{2+}\;and\;SO_4^{2-}$, 0.68 between $Ca^{2+}\;and\;SO_4^{2-}$. Concentration range of $Ca^{2+}$ in tailing dumps was $6.85{\sim}323.58mg/L,\;and\;3.18{\sim}207.20mg/L$ in bedrock. Concentration range of $SO_4^{2-}$ in tailing dumps was $21.54{\sim}1673.17mg/L,\;and\;2.04{\sim}1024.64mg/L$ in bedrock. By the result of Piper diagram analysis with aquifer material, groundwater in tailing dumps was $Ca-SO_4$ type. Groundwater quality types with bedrock material were Mg-$SO_4$ and Mg-$HCO_3$ types in serpentinite area, Ca-$HCO_3$ type in carbonate area, Na-K and $CO_3+HCO_3$ types in hornfels, respectively. As a result of this study, groundwater in tailing dumps were dissolved $Ca^{2+},\;Mg^{2+}\;and\;SO_4^{2-}$ components with high concentration. Also, these ion components were transported into bedrock aquifer.

Geochemical Characteristics of Soil Solution from the Soil Near Mine Tailing Dumps and the Contamination Assessment in Duckum Mine (토양수의 자구화학특성에 따른 금속폐광산 광미야적장주변 토양오염평가: 덕음광산)

  • 이상훈;정주연
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.61-72
    • /
    • 2004
  • The soil samples were collected from the paddy field near the mine tailing dumps in the abandoned Duckum mine in Korea. In the laboratory, the soil solution was extracted from the soil using centrifuge, and analysed for the chemical composition. Physical and chemical soil properties were also analysed. Kaolinite is the main clay minerals in the paddy soil and the CEC value is therefore relatively low. Nearly all soil samples show enrichment in their trace elemental concentrations(Cd, Cu, Pb and Zn) compared with natural background level. Some soil samples exceed the soil remediation intervention values for Cd, Pb and Zn and target value for Cu, when compared with Dutch standard, whereas As, Ni and Cr are in normal range. Lead concentrations in some samples near the mine tailing dumps also exceed the standard for remediation act for agricultural area set by Korean soil conservation law. The trace elemental concentrations are higher in the paddy soil nearer the mine tailing dumps and lower for the samples from distance. Similar trend with distance is found for the soil solution chemistry but the decrease with distance from the mine tailing dumps are sharper than the changes in soil chemistry. Cadmium, Cu and Pb concentrations in the soil solution are very low, ranging from a tenth and hundredths to a maximum of several mg/l, whereas their concentrations in soils are highly enriched for natural background. Most of the trace elements are thought to be either removed by reduced iron sulphides or iron oxides, depending on the redox changes. Geochemical equilibrium modelling indicate the presence of solubility controlling solid phases for Cd and Pb, whereas Zn and Cu might have been controlled by adsorption/desorption processes. Although pollutants migration through solution phase are thought to be limited by adsorption onto various Fe, Mn solid phases, the pollutants exist as easily releasable fractions such as exchangeable site. In this case, the paddy soil would act as pollutant pool, which will supply to plants in situ. whenever the geochemical conditions favour.

Review of Heap leaching Technologies (더미 침출에 대한 소고)

  • 정승재;조종상;이재장
    • Resources Recycling
    • /
    • v.7 no.5
    • /
    • pp.3-12
    • /
    • 1998
  • The most recent research in precious metal processing is found in the increasing use of heap leaching for the extraction of gold from low grade ores and tailing dumps because heap leaching has several advantages compared to traditional milling. They include simplicity, lower capital and operating costs, faster starter-up time and environmental safety. In this paper, an attempt has been made to provide an overview of important factors involved in the implementation of heap leaching technology as a vehicle for gold extraction from its low grade ores. Brief discussions of the various important elements to this process has been made to ascertain the heap leaching characteristics, such as heap leaching chemistry, natural factors, ore preparation, heap and pad construction, solution collection system, pond system, metal extraction, and economical consideration.

Exposure and human risk assessment of toxic heavy metals on abandoned metal mine areas

  • Lee Jin-Soo;Chon Hyo-Taek
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.515-517
    • /
    • 2003
  • In order to assess the risk of adverse health effects on human exposure to arsenic and heavy metals influenced by past mining activities, environmental geochemical surveys were undertaken in the abandoned metal mine areas (Dongil Au-Ag-Cu-Zn, Okdong Cu-Pb-Zn, Songcheon Au-Ag, Dongjung Au-Ag-Pb-Zn, Dokok Au-Ag-Cu and Hwacheon Au-Ag-Pb-Zn mines). Arsenic and other heavy metals were highly elevated in the tailings from the Dongil, the Songcheon and the Dongjung mines. High concentrations of heavy metals except As were also found in tailings from the Okdong, the Dokok and the Hwacheon mines. These significant concentrations can impact on soils and waters around the tailing dumps. Risk compounds deriving from mine sites either constitute a toxic risk or a carcinogenic risk. The hazard index (H.I.) of As in the Dongil, the Okdong, the Songcheon and the Hwacheon mine areas was higher value more than 1.0. In the Okdong and the Songcheon mine areas, H.I. value of Cd exceeded 1.0. These values of As and Cd were the highest in the Songcheon mine area. Therefore, toxic risks for As and Cd exist via exposure (ingestion) of contaminated soil, groundwater and rice grain in these mine areas. The cancer risk for As in stream or ground water used for drinking water from the Songcheon, the Dongil, the Okdong, the Dongjung and the Hwacheon mine areas was 3E-3, 8E-4, 7E-4, 2E-4 and 1E-4, respectively.

  • PDF

Contamination Assessment of Water Quality and Stream Sediments Affected by Mine Drainage in the Sambo Mine Creek (삼보광산 수계 하천수질 및 퇴적토의 오염도 평가)

  • Jung, Goo-Bok;Kwon, Soon-Ik;Hong, Sung-Chang;Kim, Min-Kyeong;Chae, Mi-Jin;Kim, Won-Il;Lee, Jong-Sik;Kang, Kee-Kyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.2
    • /
    • pp.122-128
    • /
    • 2012
  • BACKGROUND: Mine drainage from metal mining districts is a well-recognized source of environmental contamination. Oxidation of metal sulfides in mines, mine dumps and tailing impoundments produces acidic, metal-rich waters that can contaminate the local surface water and soil. METHODS AND RESULTS: This experiment was carried out to investigate the pollution assessment of heavy metal on the water quality of mine drainage, paddy soils and sediment in lower watershed affected by mine drainage of the Sambo mine. The average concentrations of dissolved Cd (0.018~0.035 mg/L) in mine drainage discharged from the main waste rock dumps(WRD) was higher than the water quality standards (0.01 mg/L) for agricultural water in Korea. Also, the average concentrations of dissolved Zn, Fe and Mn were higher than those of recommended maximum concentrations (Zn 2.0, Fe 5.0, Mn 0.2 mg/L) of trace metal in irrigation water proposed by FAO (1994). The average contents of Pb and Zn in paddy soils was higher than those of standard level for soil contamination(Pb 200, Zn 300 mg/kg) in agricultural soil by Soil Environmental Conservation Act in Korea. Also, the concentrations of Cd, Pb and Zn in sediment were higher than those of standard level for soil contamination (Cd 10, Pb 400, Zn 600 mg/L) in waterway soil by Soil Environmental Conservation Act in Korea. The enrichment factor (EFc) of heavy metals in stream sediments were in the order as Cd>Pb>Zn> As>Cu>Cr>Ni. Also, the geoaccumulation index (Igeo) of heavy metals in stream sediments were in the order as Zn>Cd>Pb>Cu>As>Cr>Ni, specially, the geoaccumulation index (Igeo) of Zn (Igeo 3.1~6.2) were relatively higher than that of other metals in sediment. CONCLUSION(s): The results indicate that stream water and sediment were affected by mine drainage discharged from the Sambo mine at least to a distance of 1 km downstream (SN-1, SN-2) of the mine water discharge point.

Monitoring of Seasonal Water Quality Variations and Environmental Contamination in the Sambo Mine Creek, Korea (삼보광산 하류 수계의 계절별 수질변화와 오염도 평가)

  • Jung, Goo-Bok;Lee, Jong-Sik;Kim, Won-Il;Ryu, Jong-Su;Yun, Sun-Gang
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.328-336
    • /
    • 2008
  • Metal mining district drainage is a well recognized source of environmental contamination. Oxidation of metal sulfides produces acidic and metal-rich waters that contaminate local surface water and ground water in mines, mine dumps, and tailing impoundments. This monitoring study was carried out to investigate the stream water quality and pollution as affected by the Sambo mine drainage in relation to the relative distance from the mine. It obvious that pH values of the mine drainage ranged from 5.8 to 6.9, while the average concentrations of the dissolved chemical constituents for EC, $SO_4^{2-}$, $K^+$, $Ca^{2+}$, and $Mg^{2+}$ were $1.77\;dS\;m^{-1}$, 929, 14.6, 263.3, and 46.9 mg/L in mine drainage discharged from the main waste rock dumps (WRD), respectively. Furthermore, EC values and sulfate concentrations exceeded the critical toxicity levels in agricultural water for rice plant ($1.0\;dS\;m^{-1}$ for EC and 54.0 mg/L for $SO_4^{2-}$). Also, the average of dissolved cadmium concentrations ($0.016{\sim}0.021\;mg/L$) was higher than water quality standard (0.01 mg/L) for agricultural water in Korea, in addition to Zn, Fe and Mn were higher than trace metals maximum concentrations which recommended by FAO for irrigation water. The results indicate that mine drainage discharged from the Sambo mine affected stream water at least to distance of 1 km downstream of the mine water discharge point. EC values, $SO_4^{2-}$ and $Ca^{2+}$ concentrations in discharged water positively correlated with dissolved Cd, Zn, Al and Mn concentrations, while the pH values negatively correlated. In addition, EC values, $SO_4^{2-}$ and $Ca^{2+}$ concentrations were negatively correlated with pH values.

Environmental Contamination and Bioavailability Assessment of Heavy Metals in the Vicinity of the Dogok Au-Ag-Cu Mine (도곡(Au-Ag-Cu)광산 주변지역의 중금속 원소들의 환경오염특성 및 생체흡수도 평가)

  • Lee Sung-Eun;Lee Jin-soo;Chon Hyo-Taek
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.135-142
    • /
    • 2005
  • In order to investigate the contamination level and seasonal variation of heavy metals and evaluate the bioavailability of toxic elements, environmental geochemical survey was undertaken at the Dogok Au-Ag-Cu mine area. The main pollution sources in the area were suggested as tailings, mine waste materials and mine water. Elevated levels of $140{\cal}mg/{\cal}kg{\;}As,{\;}107{\cal}mg/{\cal}kg{\;}Cd,{\;} 3017{\cal}mg/{\cal}kg{\;}Cu,{\;}12926{\cal}mg/{\cal}kg{\;}Pb,{\;}9094{\cal}mg/{\cal}kg$ Zn(before rainy season) were found in mine tailings. Concentrations of heavy metals in farmland soils exceeded normal level in nature soil (Bowen, 1979). The highest level of heavy metals was found in water samples near the mine tailing dumps regarded as a main pollution source of toxic elements in the area. These concentrations decreased to downstream due to the effect of dilution. From the results of sequential extraction analyses for tailings and soils, non-residual forms of heavy metals were found, which indicate the contamination to be progressing by continuing weathering and oxidation. Cadmium and Zn would be of the highest mobility in all samples. The bioavailability of Cd, Cu, Zn and As using SBET analysis from paddy soils was $53.3{\%},{\;}46.5{\%},{\;}41.0{\%}$ and $37.0\%$, respectively. The farmland soil sample(S3) showed the highest total concentration and bioavailability of heavy metals.

Characteristics of Precipitates and Geochemistry of Mine and Leachate Water in Janggun Mine (장군광산 갱내수와 침출수의 지화학적 및 침전물의 특성 연구)

  • Kim, Jun Yeong;Jang, Yun Deug;Kim, Yeong Hun;Kim, Jeong Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.125-134
    • /
    • 2014
  • The Janggun mine (Longitude $E129^{\circ}$ 03' 40", Latitude $N36^{\circ}$ 51' 19") was once operated as an underground mine and recently significant amount of mine and leachate water has been discharged from the mine adits and tailing dumps. Mine and leachate waters are characterized by neutral to weakly basic pH values (6.81-9.59). Major cations and anions have concentrations between 6.70-129.80 mg/L of Mg, 289.29-661.02 mg/L of Ca, 4.74-14.38 mg/L of Mn and 1205.00-2448.69 mg/L of $SO{_4}^{2-}$. Brownish yellow precipitates that found in the stream bottom consist of poorly crystallized 2-line ferrihydrite ($Fe_2O_3{\cdot}0.5H_2O$. Scanning electron microscope (SEM) photographs show that brownish yellow precipitates consisted of micro-sized granular particles of about $0.1{\mu}m$ in diameter. Semi-quantitative energy dispersive spectrometry (EDS) analyses show that these samples contained mainly Fe with minor Mn, Ca, Si and As.

Human Risk Assessment of Toxic Heavy Metals Around Abandoned Metal Mine Sites (금속광산지역 독성 중금속원소들의 인체 위해성 평가)

  • 이진수;전효택
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.73-86
    • /
    • 2004
  • In order to estimate the post-ingestion bioavailability of heavy metals and to assess the risk of adverse health effects on human exposure to toxic heavy metals, environmental geochemical surveys were undertaken around the Dogok Au-Ag-Cu and the Hwacheon Au-Ag-Pb-Zn mine sites. Human risk assessment of toxic heavy metals was performed with the results of the SBET(simple bioavailability extraction test) analysis for soil and chemical analytical data for crop plant and water. Arsenic and other heavy metals were highly elevated in tailings from the Dogok(218 As mg/kg, 90.2 Cd mg/kg, 3,053 Cu mg/kg, 9,473 Pb mg/kg, 14,500 Zn mg/kg) and the Hwacheon(72 As mg/kg, 12.4 Cd mg/kg. 578 Pb mg/kg, 1,304 Zn mg/kg) mines. These significant concentrations can impact on soils and waters around the tailing dumps. The quantities of As, Cd and Zn extracted from paddy soils in the Hwacheon mine using the SBET analysis were 55.4%, 20.8% and 26.4% bioavailability, respectively, and for farmland soils in the Dogok mine, 40.8%, 37.6% and 33.0% bioavailability, respectively. From the results of human risk assessment, HI(Hazard Index) value exceeded 1.0 for As in the Hwacheon mine and for Cd in the Dogok mine. Thus, toxic risks for As and Cd exist via exposure(ingestion) of contaminated soil, water and rice grain in these mine sites. The cancer risk for As by the consumption of rice and groundwater in the Hwacheon mine area was 8E-4 and 1E-4, respectively. This risk level exceeds the acceptable risk(1 in 100,000) for regulatory purpose. Therefore, regular ingestion of locally grown rice and ground-water by the local population can pose a potential health threat due to long-term arsenic exposure.