References
- Zadeh, L.A.: Fuzzy sets. Information and Control. 8 (1965) 338-353 https://doi.org/10.1016/S0019-9958(65)90241-X
- Tong, R.M.: Synthesis of fuzzy models for industrial processes. Int. J Gen Syst. 4 (1978) 143-162 https://doi.org/10.1080/03081077808960680
- Pedrycz, W.: Numerical and application aspects of fuzzy relational equations. Fuzzy Sets Syst. 11 (1983) 1-18 https://doi.org/10.1016/S0165-0114(83)80066-9
- Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst, Cybern. SMC-15(1) (1985) 116-132 https://doi.org/10.1109/TSMC.1985.6313399
- Sugeno, M., Yasukawa, T.: Linguistic modeling based on numerical data. In: IFSA'91 Brussels, Computer, Management & System Science. (1991) 264-267
- Oh, S.K., Pedrycz, W.: Identification of fuzzy systems by means of an auto-tuning algorithm and its application to nonlinear systems. Fuzzy Sets and Syst. 115(2) (2000) 205-230 https://doi.org/10.1016/S0165-0114(98)00174-2
- Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Syst. 90 (1997) 111-117 https://doi.org/10.1016/S0165-0114(97)00077-8
- Pderycz, W., Vukovich, G.: Granular neural networks. Neurocomputing. 36 (2001) 205-224 https://doi.org/10.1016/S0925-2312(00)00342-8
- Krishnaiah, P.R., Kanal, L.N., Editors.: Classification, pattern recognition, and reduction of dimensionality, volume 2 of Handbook of Statistics. North-Holland Amsterdam (1982)
- Golderg, D.E.: Genetic Algorithm in Search, Optimization & Machine Learning, Addison Wesley (1989)
- Sugeno, M., Yasukawa, T.: A Fuzzy-Logic-Based Approach to Qualitative Modeling. IEEE Trans. on Fuzzy Systems. 1(1) (1993) 7-13 https://doi.org/10.1109/TFUZZ.1993.390281
- Gomez Skarmeta, A. F., Delgado, M., Vila, M. A.: About the use of fuzzy clustering techniques for fuzzy model identification. Fuzzy Sets and Systems. 106 (1999) 179-188 https://doi.org/10.1016/S0165-0114(97)00276-5
- Kim, E. T., Park, M. K., Ji, S. H., Park, M. N.: A new approach to fuzzy modeling. IEEE Trans. on Fuzzy Systems. 5(3) (1997) 328-337 https://doi.org/10.1109/91.618271
- Kim, E. T, Lee, H. J., Park, M. K., Park, M. N.: A simply identified Sugeno-type fuzzy model via double clustering. Information Sciences. 110 (1998) 25-39 https://doi.org/10.1016/S0020-0255(97)10083-4
- Oh, S. K., Pedrycz, W., Park, B. J.: Polynomial Neural Networks Architecture: Analysis and Design. Computers and Electrical Engineering. 29(6) (2003) 703-725 https://doi.org/10.1016/S0045-7906(02)00045-9
- Park, B. J., Pedrycz, W., Oh, S. K.: Fuzzy Polynomial Neural Networks: Hybrid Architectures of Fuzzy Modeling. IEEE Trans. on Fuzzy Systems. 10(5) (2002) 607-621 https://doi.org/10.1109/TFUZZ.2002.803495
- Park, H.S., Oh, S.K.: Fuzzy Relation-based Fuzzy Neural-Networks Using a Hybrid Identification Algorithm. International Journal of Control Automation and Systems. 1(3) (2003) 289-300
Cited by
- Granular Neural Networks and Their Development Through Context-Based Clustering and Adjustable Dimensionality of Receptive Fields vol.20, pp.10, 2009, https://doi.org/10.1109/TNN.2009.2027319
- Structural and parametric design of fuzzy inference systems using hierarchical fair competition-based parallel genetic algorithms and information granulation vol.49, pp.3, 2008, https://doi.org/10.1016/j.ijar.2008.06.006
- The development of fuzzy radial basis function neural networks based on the concept of information ambiguity vol.73, pp.13-15, 2010, https://doi.org/10.1016/j.neucom.2010.05.006
- A fuzzy ensemble of parallel polynomial neural networks with information granules formed by fuzzy clustering vol.23, pp.3, 2010, https://doi.org/10.1016/j.knosys.2009.12.002
- The design of a fuzzy cascade controller for ball and beam system: A study in optimization with the use of parallel genetic algorithms vol.22, pp.2, 2009, https://doi.org/10.1016/j.engappai.2008.07.003
- Design of K-means clustering-based polynomial radial basis function neural networks (pRBF NNs) realized with the aid of particle swarm optimization and differential evolution vol.78, pp.1, 2012, https://doi.org/10.1016/j.neucom.2011.06.031
- Design of optimized fuzzy cascade controllers by means of Hierarchical Fair Competition-based Genetic Algorithms vol.36, pp.9, 2009, https://doi.org/10.1016/j.eswa.2009.03.027
- A Design of Genetically Oriented Fuzzy Relation Neural Networks (FrNNs) Based on the Fuzzy Polynomial Inference Scheme vol.17, pp.6, 2009, https://doi.org/10.1109/TFUZZ.2009.2030332
- Hybrid fuzzy set-based polynomial neural networks and their development with the aid of genetic optimization and information granulation vol.9, pp.3, 2009, https://doi.org/10.1016/j.asoc.2009.02.007
- Fuzzy set-oriented neural networks based on fuzzy polynomial inference and dynamic genetic optimization vol.39, pp.1, 2014, https://doi.org/10.1007/s10115-012-0610-x
- Identification of fuzzy relation models using hierarchical fair competition-based parallel genetic algorithms and information granulation vol.33, pp.6, 2009, https://doi.org/10.1016/j.apm.2008.08.022