Development of Metal Filter with Nanoporous Structure by Adhesion of Metal Nanoparticles Sintered onto a Micor-Filter

마이크로-필터 상에 소결 처리된 금속 나노입자 고착에 의한 나노기공체 금속 필터 개발

  • Lee, Dong Geun (Department of Mechanical Engineering, Chungnam National University) ;
  • Park, Seok Joo (Zero Emission System Research Center, Korea Institute of Energy Research) ;
  • Park, Young Ok (Zero Emission System Research Center, Korea Institute of Energy Research) ;
  • Ryu, Jeong In (Department of Mechanical Engineering, Chungnam National University)
  • 이동근 (충남대학교 기계공학과) ;
  • 박석주 (한국에너지기술연구원 청정시스템연구센터) ;
  • 박영옥 (한국에너지기술연구원 청정시스템연구센터) ;
  • 류정인 (충남대학교 기계공학과)
  • Received : 2007.08.16
  • Accepted : 2007.12.03
  • Published : 2008.04.30

Abstract

The nanoparticle-agglomerates are synthesized by laser ablation, which have the morphology of dendrite structure. The filtration performance of a conventional micron-fibrous metal filter was improved by adhering nanoparticle-agglomerates onto the filter surface. The Sintered-Nanoparticle-Agglomerates-adhered Filter (SNAF) adhered with nanostructured material was made by heat treatment after deposition of nanoparticle-agglomerates sintered in aerosol phase onto the micron-fibrous metal filter. As the sintering temperature increases, the pressure drop of the filter increases a little but the filtration efficiency increases remarkably. This is due to increase of surface area of nanoparticle-agglomerates adhered onto the micron-fibrous metal filter.

레이저 애블레이션에 의해서 가지상 구조체 형상인 나노입자 응집체를 합성하였다. 기존 마이크론 금속섬유 필터의 표면상에 나노입자 응집체를 고착하여 여과성능을 향상시켰다. 에어로졸 상에서 소결 처리된 나노입자 응집체를 증착한 후 열처리를 하여 나노구조체가 표면상에 형성된 소결 처리된 나노입자 응집체 고착 필터를 제작하였다. 소결 온도가 증가할수록 마이크론 금속섬유 필터 표면상에 고착된 나노입자 응집체의 표면적 증가로 인하여 차압은 조금 증가하지만 여과효율은 현저하게 증가하였다.

Keywords

References

  1. Cao, G., "Nanosturctures and Nanomaterials," Imperial College Press(2004)
  2. Subramania, G., Constant, K., Biswas, R., Sigalas, M. M. and Ho, K. M., "Optical Photonic Crystals from Colloidal Systems of Polystyrene Spheres and Nanocrystalline Titania," J. Lightwave Tech., 17(11), 1970-1974(1999) https://doi.org/10.1109/50.802982
  3. Steigerwald, M. L, Alivisatos. A. P., Gibson, J. M., Harris, T. D., Kortan, R., Muller, A. J. and Thayer, A. M., "Surface Derivatization and Isolation of Semiconductor Cluster Molecules," J. Am. Chem. Soc. 110(10), 3046-3050(1988) https://doi.org/10.1021/ja00218a008
  4. Houriet, R., Vacassy, R., Hofmann, H., Von Kaenel, Y. and Hofmeister, W., "Formation of a Novel Carbon Microstucture Using Laser Atomization: Carbon Nanocurls," Carbon, 39(9), 1425-1429(2001) https://doi.org/10.1016/S0008-6223(01)00087-2
  5. Houriet, R., Vacassy, R., Hofmann, H. and Vogel, W., "Thin Film Growth Using Ablation of Ceramics with a Lina-Spark Atomizer," Mater. Res. Soc. Symp. Proc., 526, 117-122(1998)
  6. Houriet, R., Vacassy, R. and Hofmann, H., "Synthesis of Powders and Films Using a New Laser Ablation Technique," NanoStr. Mater., 11(8), 1155-1163(1999) https://doi.org/10.1016/S0965-9773(99)00406-7
  7. Megaridis, C. M. and Dobbins, R. A., "Morphological Description of Flame-Generated Materials," Combust. Sci. and Tech., 71(1-3), 95-109(1990) https://doi.org/10.1080/00102209008951626
  8. Davies, C. N., "Air Filtration," New York: Academic Press (1973)
  9. Hinds, W. C., "Aerosol Technology; Properties, Behavior, and Measurement of Airborne Particle," New York: John Wiley & Sone(1982)