퇴적물에서 금속 이온 거동에 미치는 습지 식물의 영향에 관한 모델 연구

A Modeling Approach: Effects of Wetland Plants on the Fate of Metal Species in the Sediments

  • 최정현 (이화여자대학교 공과대학 환경공학과)
  • Choi, Jung Hyun (Department of Environmental Science and Engineering, College of Engineering, Ewha Womans University)
  • 투고 : 2008.07.28
  • 심사 : 2008.08.21
  • 발행 : 2008.09.30

초록

A mathematical model was developed to understand how the presence of plants affects vertical profiles of electron acceptors, their reduced species, and trace metals in the wetland sediments. The model accounted for biodegradation of organic matter utilizing sequential electron acceptors and subsequent chemical reactions using stoichiometric relationship. These biogeochemical reactions were affected by the combined effects of oxygen release and evapotranspiration driven by wetland plants. The measured data showed that $SO_4{^{2-}}$ concentrations increased at the beginning of the growing season and then gradually decreased. Based on the measured data, it was hypothesized that the limitation of the solid phase sulfide in direct contact with the roots may result in the gradual decrease of $SO_4{^{2-}}$ concentrations. With the dynamic formulation for the limitation of the solid phase sulfide, model simulated time variable sulfate profiles using published model parameters. Oxygen release from roots produced divalent metal species (i.e. $Cd^{2+}$) as well as oxidized sulfur species (i.e. $SO_4{^{2-}}$) in the sediment pore water. Evapotranspiration-induced advection increased flux of divalent metal species from the overlying water column into the rhizosphere. The increased divalent metal species were converted to the metal sulfide with sufficient FeS around the rhizosphere, which contributed to the decrease of bioavailability and toxicity of divalent metal activity in the pore water. Since the divalent metal activity is a good predictor of the metal bioavailability, this model with a proper simulation of solid phase sulfide plays an essential role to predict the dynamics of trace metals in the wetland sediments.

키워드

참고문헌

  1. 박석순(1995). 퇴적물 초기 속성작용과 미량 오염물질의 거동. 대한환경공학회지, 17(9), pp. 825-834
  2. 최정현, 박석순(2005). 퇴적 유기물 분해과정에 따른 물질 거동 변화 예측을 위한 수치모델 적용. 대한환경공학회지, 27(2), pp. 151-157
  3. Abrams, R. H. and Loague, K. (2000). A compartmentalized solute transport model for redox zones in contaminated aquifers 2. Field-scale simulations. Water Resour. Res., 36, pp. 2015-2029 https://doi.org/10.1029/2000WR900111
  4. Armstrong, W. (1979). Aeration in higher plants. Adv. Bot. Res., 7, pp. 225-232
  5. Berner, R. A. (1984). Sedimentary pyrite formation: an update. Geochim. Cosmochim. Acta, 48, pp. 605-615 https://doi.org/10.1016/0016-7037(84)90089-9
  6. Choi, J. H., Park, S. S., and Jaffe P. R. (2006). Effects of emergent macrophytes on the biogeochemistry in wetland sediments. Environ. Pollution, 140, pp. 286-293 https://doi.org/10.1016/j.envpol.2005.07.009
  7. Dacey, J. W. H. (1980). Internal winds in the water-lilies: Adaptation for life in anaerobic sediments. Science, 210, pp. 1017-1019 https://doi.org/10.1126/science.210.4473.1017
  8. Di Toro, D. M., Mahony, J. D., Hansen, D. J., Scott, K. J., Hicks, M. B., and Mayr, S. M. (1990). Toxicity of cadmium in sediments: the role of acid volatile sulfide. Environ. Toxicol. Chem., 9, pp. 1287-1502
  9. El-Shatnawi, M. K. J. and Makhadmeh, I. M. (2001). Ecophysiology of the plant-rhizosphere system. J. Agron. Crop Sci., 187, pp. 1-9 https://doi.org/10.1046/j.1439-037X.2001.00498.x
  10. Emerson, S., Jacobs, L., and Tebo, B. (1983). The behavior of trace metals in marine anoxic waters: Solubilities at the oxygen-hydrogen sulfide interface. Trace Metals in Sea Water, C. S. Wong, E. Boyle, K. W. Bruland, J. D. Burton, and E. D. Goldberg (eds.), Plenum Press, New York, NY, USA, pp. 579-608
  11. Howarth, R. W. and Jorgensen, B. B. (1984). Formation of $^35S-labelled$-labelled elemental sulfur and pyrite in coastal marine sediments (Limfjorden and Kysing Fjord, Denmark) during short-term $^35SO_4^2-$ reduction measurements. Geochim. Cosmochim. Acta, 48, pp. 1807-1818 https://doi.org/10.1016/0016-7037(84)90034-6
  12. Huerta-Diaz, M. A., Tessier, A., and Carignan, R. (1998). Geochemistry of trace metals associated with reduced sulfur in freshwater sediments. Appl. Geochem., 13, pp. 213-233 https://doi.org/10.1016/S0883-2927(97)00060-7
  13. Hunter, K. S., Wang, Y., and Van Cappellen, P. (1998). Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry. J. Hydrol., 209, pp. 53-80 https://doi.org/10.1016/S0022-1694(98)00157-7
  14. Jaffe, P. R., Wang, S., Kallin, P. L., and Smith, S. L. (2001). The Dynamics of Arsenic in Saturated Porous Media: Fate and Transport Modeling for Deep-Water Sediments, Wetland Sediments, and Groundwater Environments. Water Rock Interactions, Ore deposits, and Environmental Geochemistry: A Tribute to David Crerar, R. Hellman and S. A. Wood (eds.), The Geochemical Society, Special Publication No 7
  15. Lefroy, R. D. B., Chaitep, W., and Blair, G. J. (1994). Release of sulfur from rice residues under flooded and non-flooded soil conditions. Aust. J. Agric. Res., 45, pp. 657-667 https://doi.org/10.1071/AR9940657
  16. Li, Y. H. and Gregory, S. (1974). Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta, 38, pp. 703-714 https://doi.org/10.1016/0016-7037(74)90145-8
  17. Mendelssohn, I. A., Keiss, B. A., and Wakeley, J. S. (1995). Factors controlling the formation of oxidized root channels: a review. Wetlands, 15, pp. 37-46
  18. Park, S. S. and Jaffe, P. R. (1996). Development of a sediment redox potential model for the assessment of postdepositional metal mobility. Ecol. Model., 91, pp. 169-181 https://doi.org/10.1016/0304-3800(95)00188-3
  19. Redfield, A. D. (1958). The biological control of chemical factors in the environment, Am. Sci., 46, pp. 206-226
  20. Smith, S. L. and Jaffe, P. R. (1998). Modeling the transport and reaction of trace metals in water-saturated soils and sediments. Water Resour. Res., 34, pp. 3135-3147 https://doi.org/10.1029/98WR02227
  21. Sorrell, B. K. (1999). Effect of external oxygen demand on radial oxygen loss by juncos roots in titanium citrate solutions. Plant Cell Environ., 22, pp. 1587-1593 https://doi.org/10.1046/j.1365-3040.1999.00517.x
  22. Urban, N. R., Brezonik, P. L., Baker, L. A., and Sherman, L. A. (1994). Sulfate reduction and diffusion in sediments of Little Rock Lake. Wisconsin. Limnol. Oceanogr., 39, pp. 797-815 https://doi.org/10.4319/lo.1994.39.4.0797
  23. Wang, S., Jaffe, P. R., Li, G., Wang, S. W., and Rabitz, H. A. (2003). Simulating bioremediation of uranium-contaminated aquifers; uncertainty assessment of model parameters. J. Contami. Hydrol., 64, pp. 283-307 https://doi.org/10.1016/S0169-7722(02)00230-9
  24. Wijsman, J. W. M., Herman, P. M. J., Middelburg, J. J., and Soetaert, K. (2002). A model for early diagenetic processes in sediments of the continental shelf of the black sea. Estuar. Coast. Shelf Sci., 54, pp. 403-421 https://doi.org/10.1006/ecss.2000.0655
  25. Wind, T. and Conrad, R. (1995). Sulfur compounds, potential turnover of sulfate and thiosulfate, and numbers of sulfatereducing bacteria in planted and unplanted paddy soil. FEMS Microbiol. Ecol., 18, pp. 257-266 https://doi.org/10.1111/j.1574-6941.1995.tb00182.x
  26. Xu, S., Leri, A. C., Myneni, S. C. B., and Jaffe, P. R. (2004). Uptake of bromide by two wetland plants (Typha latifolia L.and Phragmites australis(Cav.) Trin. ex Steud). Environ. Sci. Technol., 38, pp. 5642-5648 https://doi.org/10.1021/es049568o