Marker Production by PCR Amplification with Primer Pairs from Conserved Sequences of WRKY Genes in Chili Pepper

  • Kim, Hyoun-Joung (Department of Plant Science, Seoul National University) ;
  • Lee, Heung-Ryul (Department of Plant Science, Seoul National University) ;
  • Han, Jung-Heon (Center for Plant Molecular Genetics and Breeding Research, Seoul National University) ;
  • Yeom, Seon-In (Department of Plant Science, Seoul National University) ;
  • Harn, Chee-Hark (Biotechnology Institute, Nongwoo Bio Company) ;
  • Kim, Byung-Dong (Department of Plant Science, Seoul National University)
  • Received : 2007.06.22
  • Accepted : 2007.12.04
  • Published : 2008.04.30

Abstract

Despite increasing awareness of the importance of WRKY genes in plant defense signaling, the locations of these genes in the Capsicum genome have not been established. To develop WRKY-based markers, primer sequences were deduced from the conserved sequences of the DNA binding motif within the WRKY domains of tomato and pepper genes. These primers were derived from upstream and downstream parts of the conserved sequences of the three WRKY groups. Six primer combinations of each WRKY group were tested for polymorphisms between the mapping parents, C. annuum 'CM334' and C. annuum 'Chilsung-cho'. DNA fragments amplified by primer pairs deduced from WRKY Group II genes revealed high levels of polymorphism. Using 32 primer pairs to amplify upstream and downstream parts of the WRKY domain of WRKY group II genes, 60 polymorphic bands were detected. Polymorphisms were not detected with primer pairs from downstream parts of WRKY group II genes. Half of these primers were subjected to $F_2$ genotyping to construct a linkage map. Thirty of 41 markers were located evenly spaced on 20 of the 28 linkage groups, without clustering. This linkage map also consisted of 199 AFLP and 26 SSR markers. This WRKY-based marker system is a rapid and simple method for generating sequence-specific markers for plant gene families.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation (KOSEF)

References

  1. Arumuganathan, K., and Earle, E.D. (1991). Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9, 208-218 https://doi.org/10.1007/BF02672069
  2. Baldi, P., Patocchi, A., Zini, E., Toller, C., Velasco, R., and Komjanc, M. (2004). Cloning and linkage mapping of resistance gene homologues in apple. Theor. Appl. Genet. 109, 231-239 https://doi.org/10.1007/s00122-004-1624-x
  3. Ballvora, A., Ercolano, M.R., Weiss, J., Meksem, K., Bormann, C.A., Oberhagemann, P., Salamini, F., and Gebhardt, C. (2002). The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. Plant J. 30, 361-371 https://doi.org/10.1046/j.1365-313X.2001.01292.x
  4. Borrone, J.W., Kuhn, D.N., and Schnell, R.J. (2004). Isolation, characterization, and development of WRKY genes as useful genetic markers in Theobroma cacao. Theor. Appl. Genet. 109, 495-507
  5. Calenge, F., Linden, C.G., Weg, E., Schouten, H.J., Arkel, G., Denance, C., and Durel, C.E. (2005). Resistance gene analogues identified through the NBS-profiling method map close to major genes and QTL for disease resistance in apple. Theor. Appl. Genet. 110, 660-668 https://doi.org/10.1007/s00122-004-1891-6
  6. Corpet, F. (1988). Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881-10890 https://doi.org/10.1093/nar/16.22.10881
  7. Eulgem, T., Rushton, P.J., Robatzek, S., and Somssich, I.E. (2000). The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5, 199-206 https://doi.org/10.1016/S1360-1385(00)01600-9
  8. Eulgem, T., Rushton, P., Schmelzer, E., Hahlbrock, K., and Somssoch, I.E. (1999). Early nuclear events in plant defence signaling: rapid gene activation by WRKY transcription factors. EMBO J. 18, 4689-4699 https://doi.org/10.1093/emboj/18.17.4689
  9. Huang, S., van der Vossen, E.A., Kuang, H., Vleeshouwers, V.G., Borm, T.J., van Eck, H.J., Baker B., Jacobsen, E., and Visser, R.G. (2005). Comparative genomics enabled the isolation of blight resistance gene in potato. Plant J. 42, 251-261 https://doi.org/10.1111/j.1365-313X.2005.02365.x
  10. Huh, J.H., Kang, B.C., Nahm, S.H., Kim, S., Ha, K.S., Lee, M.H., and Kim, B.D. (2001). A candidate gene approach identified phytoene synthase as the locus for mature fruit color in red pepper (Capsicum spp.). Theor. Appl. Genet. 102, 524-530 https://doi.org/10.1007/s001220051677
  11. Ishiguro, S., and Nakamura, K. (1994). Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and B-amylase from sweet potato. Mol. Gen. Genet. 244, 563-571
  12. Johansen, B., Pedersen, L., Skipper, M., and Rederiksen, S. (2002). MADS-box gene evolution-structure and transcription patterns. Mol. Phylogenet. Evol. 23, 458-480 https://doi.org/10.1016/S1055-7903(02)00032-5
  13. Jordan, T., Romer, P., Meyer, A., Szczesny, R., Pierre, M., Vanelli, P.P., Bendahmane, A., Bonas, U., and Lahaye, T. (2006). Physical delimitation of the pepper Bs3 resistance gene specifying recognition of the AvrBs3 protein from Xanthomonas campestris pv. Vesicatoria. Theor. Appl. Genet. 113, 895-905 https://doi.org/10.1007/s00122-006-0349-4
  14. Kanazin, V., Marek, L.F., and Shoemaker, R.C. (1996). Resistance gene analogs are conserved and clustered in soybean. Proc. Natl. Acad. Sci. USA 93, 11746-11750
  15. Kang, B.C., Nahm, S.H., Hhu, J.H., Yoo, H.S., Yu, U.W., Lee, M.H., and Kim, B.D. (2001). An interspecific (Capsicum annuum X C. chinense) $F_2$ linkage map in pepper using RFLP and AFLP markers. Theor. Appl. Genet. 102, 531-539 https://doi.org/10.1007/s001220051678
  16. Kim, D.S., Kim, D.H., Yoo, J.H., and Kim, B.D. (2006). Cleaved amplified polymorphic sequence and amplified fragment length polymorphism markers linked to the fertility restorer gene in chili pepper (Capsicum annuum L.). Mol. Cells 21, 135-140
  17. Lander, E.S., Green, P., Abrahamson, J., Barlow, A., and Daly, M.J. (1987). MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174-181 https://doi.org/10.1016/0888-7543(87)90010-3
  18. Lee, C.J., Yoo, E.Y., Shin, J.H., Lee, J.M., Hwang, H.S., and Kim, B.D. (2005). Non-pungent Capsicum contains a deletion in the capsaicinoid synthetase gene, which allows early detection of pungency with SCAR markers. Mol. Cells 19, 262-267
  19. Lee, J.M., Nahm, S.H., Kim, Y.M., and Kim, B.D. (2004). Characterization and molecular genetic mapping of microsatellite loci in pepper. Theor. Appl. Genet. 108, 619-662 https://doi.org/10.1007/s00122-003-1467-x
  20. Lefebvre, V., Palloix, A., Caranta, C., and Pochard, E. (1995). Construction of an intraspecific integrated linkage map of pepper using molecular markers and doubled-haploid progenies. Genome 38, 112-121 https://doi.org/10.1139/g95-014
  21. Lefebvre, V., Goffinet, B., Chauvet, J.C., Caromel, B., Signoret, P., Brand, R., and Palloix, A. (2001). Evaluation of genetic distances between pepper inbred lines for cultivar protection purpose: comparison of AFLP, RAPD and phenotypic data. Theor. Appl. Genet. 102, 741-750 https://doi.org/10.1007/s001220051705
  22. Li, G., and Quiros, C.F. (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103, 455-461 https://doi.org/10.1007/s001220100570
  23. Liu, X., Wang, X., Pang, Y., Liang, J., Liu, S., Sun, X., and Tang, K. (2006). Molecular cloning and characterization of a novel WRKY gene from Brassica chinensis. Mol. Biol. 40, 732-740 https://doi.org/10.1134/S0026893306050074
  24. Minamiyama, Y., Tsuro, M., and Hirai, M. (2006). An SSRbased linkage map of Capsicum annuum. Mol. Breed. 18, 157-169 https://doi.org/10.1007/s11032-006-9024-3
  25. Ogundiwin, E.A., Berke, T.F., Massoudi, M., Black, L.L., Huestis, G., Choi, D., Lee, S., and Prince, J.P. (2005). Construction of 2 intraspecific linkage maps and identification of resistance QTLs for Phytophthora capsici root-rot and foliarblight diseases of pepper (Capsicum annuum L.). Genome 48, 698-711 https://doi.org/10.1139/g05-028
  26. Ratnaparkhe, M.B., Tekeoglu, M., and Muehlbauer, F.J. (1998). Inter-simple-sequence-repeat (ISSR) polymorphisms are useful for finding markers associated with disease resistance gene clusters. Theor. Appl. Genet. 97, 515-519 https://doi.org/10.1007/s001220050925
  27. Raventos, D., Jensen, A.B., Rask, M.B., Casacuberta, J.M., Mundy, J., and Segundo, B.S. (1995). A 20 bp cis-acting element is both necessary and sufficient to mediate elicitor response of a maize PRms gene. Plant J. 7, 147-155 https://doi.org/10.1046/j.1365-313X.1995.07010147.x
  28. Rossberg, M., Theres, K., Acarkan, A., Herrero, R., Schmitt, T., Schmacher, K., Schmitz, G., and Schmidt, R. (2001). Comparative sequence analysis reveals extensive microcolinearity in the lateral suppressor regions of the tomato, Arabidopsis, and Capsella genomes. Plant Cell 13, 979-988 https://doi.org/10.1105/tpc.13.4.979
  29. Rushton, P.J., Reinstadler, A., Lipka, V., Lippok, B., and Somssich, I.E. (2002). Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell 14, 749-762 https://doi.org/10.1105/tpc.010412
  30. Schiex, T., and Gaspin, C. (1997). CARTHAGENE: constructing and joining maximum likelihood genetic maps. Proc. Int. Conf. Intell. Syst. Mol. Biol. 5, 258-267
  31. Schotterer, C. (2004). The evolution of molecular markers. Nature Genet. 5, 63-69 https://doi.org/10.1038/nrg1249
  32. Soriano, J.M., Vilaniva, S., Romero, C., Llacer, G., and Badenes, M.L. (2005). Characterization and mapping of NBS-LRR resistance gene analogs in apricot (Prunus armeniaca L.). Theor. Appl. Genet. 110, 980-989 https://doi.org/10.1007/s00122-005-1920-0
  33. Tai, T.H., Dahlbeck, D., Clark, E.T., Gajiwala, P., Pasion, R., Whalen, M.C., Stall, R.E., and Staskawicz, B.J. (1999). Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc. Natl. Acad. Sci. USA 96, 14153-14158
  34. Tanksley, S.D., Bernatzky, R., Lapitan, N.L., and Prince, J.P. (1988). Conservation of gene repertoire but not gene order in pepper and tomato. Proc. Natl. Acad. Sci. USA 85, 6419-6423
  35. Van der Linden, C.G., Wouters, D.A.E., Mihalka, V., Kochieva, E.Z., Smulders, M.J.M., and Vosman, B. (2004). Efficient targeting of plant disease resistance loci using NBS profiling. Theor. Appl. Genet. 109, 384-393
  36. Voorrips, R.E. (2002). MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 93, 77-78 https://doi.org/10.1093/jhered/93.1.77
  37. Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Fritjers, A., Pot, J., Paleman, J., Kuiper, M., et al. (1995). AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407-4414 https://doi.org/10.1093/nar/23.21.4407
  38. Wang, Z., Yang, P., Fan, B., and Chen, Z. (1998). An oligo selection procedure for identification of sequence-specific DNA-binding actives associated with the plant defense response. Plant J. 16, 515-522 https://doi.org/10.1046/j.1365-313x.1998.00311.x
  39. Wu, K., Jones, R., Danneberger, L., and Scolnik, P.A. (1994). Detection of microsatellite polymorphisms without cloning. Nucleic Acids Res. 22, 3257-3258 https://doi.org/10.1093/nar/22.15.3257