DOI QR코드

DOI QR Code

The relationship between adiponectin, leptin, insulin, insulin-like growth factor and IGF binding protein-3 in cord blood and neonatal anthropometric parameters

제대혈에서 아디포넥틴, 렙틴, 인슐린, IGF-I, IGFBP-3와 신생아의 신체계측과의 상관관계

  • Cho, Hai Jung (Department of Pediatrics, College of Medicine, Hallym University) ;
  • Kim, Ji Young (Department of Pediatrics, College of Medicine, Hallym University) ;
  • Kim, Me Jin (Department of Pediatrics, College of Medicine, Hallym University) ;
  • Hwang, Il Tae (Department of Pediatrics, College of Medicine, Hallym University) ;
  • Lee, Hae Ran (Department of Pediatrics, College of Medicine, Hallym University)
  • 조혜정 (한림대학교 의과대학 소아과학교실) ;
  • 김지영 (한림대학교 의과대학 소아과학교실) ;
  • 김미진 (한림대학교 의과대학 소아과학교실) ;
  • 황일태 (한림대학교 의과대학 소아과학교실) ;
  • 이혜란 (한림대학교 의과대학 소아과학교실)
  • Received : 2008.01.02
  • Accepted : 2008.05.09
  • Published : 2008.07.15

Abstract

Purpose : This study was designed to examine the effects of adiponectin, leptin, insulin, insulin-like growth factor (IGF)-I and IGF binding protein (BP)-3 levels in cord blood on weight, length, and adiposity at birth in healthy term infants. In addition, we evaluated the mechanism to change the hormone levels in appropriate for gestational age (AGA) during the first month. Methods : We collected cord blood from 200 term neonates (109 males, 91 females) with no perinatal problems, and measured the hormone levels and anthropometric parameters including weight, length, and skin-fold thickness. Term neonates were divided into 3 groups as follows: birth weight appropriate for gestational age (AGA) (n=132), birth weight less for gestational age (SGA) (n=29), and birth weight more for gestational age (LGA) (n=39). Venous blood samples of 15 fullterm healthy neonates were obtained at 3, 7, and 30 d after birth. Results : The adiponectin, insulin, and IGF-I levels were significantly lower in the SGA group than in the AGA and LGA groups. The leptin levels were significantly higher in the LGA group than in the AGA and SGA groups. Cord blood adiponectin, leptin, insulin, IGF-I, and IGFBP-3 levels correlated significantly and positively with birth weight and the sum of the skin-fold thickness. A significant positive correlation was observed between adiponectin, leptin, and IGF-I levels and birth weight. Adiponectin level correlated significantly with that leptin level (r=0.191, P=0.038), but not with insulin, IGF-I and IGFBP-3 levels. IGF-I levels were higher in females than in males. At 7 d after birth, the leptin level decreased along with physiologic weight loss, and then increased. IGF-I, also decreased at 3 d, significantly increased 1 month later. Conclusion : We suggest that adiponectin, leptin, insulin, IGF-I, and IGFBP-3 play an important role in regulating fetal growth. Adiponectin may be involved in regulating fetal growth through mechanisms different from those mediated by insulin or IGF-I. High levels of IGF-I in female neonates indicates a gender difference which serves as evidence for in utero sexual dimorphism. It is likely that IGF-I has a more important role than that of hormones in postnatal growth.

목 적 : 건강한 만삭아의 제대혈에서 아디포넥틴, 렙틴, 인슐린, IGF-I, IGFBP-3를 측정하여 출생체중, 신장, 지방량과의 관계를 알아보고자 하였다. 또한 적정 체중아 그룹에서 이 호르몬들의 출생후 1개월 동안 변화에 대해서 살펴보기로 하였다. 방 법 : 임신과 관련된 합병증이 없었던 산모에서 태어난 200명의 건강한 만삭아(남아 109명, 여아 91명)를 대상으로 하여 제대혈을 채취하여 혈장과 혈청을 분리하였고 출생체중, 출생신장, 머리둘레, 가슴둘레, 피부두께를 측정하였으며 폰더랄지수를 계산하였다. 대상 신생아들을 출생체중에 따라 AGA (n=132), SGA (n=29), LGA (n=39)의 세 그룹으로 나누었다. 적정체중아 중 15명에서 생후 3일, 7일, 30일에 신생아의 혈액을 채취하여 제대혈과 같은 방법으로 분리하였고 체중과 신장을 측정하였다. 결 과 : 아디포넥틴과 인슐린, IGF-I은 AGA, LGA군보다 SGA군에서 더 낮았다. 렙틴은 AGA, SGA군보다 LGA군에서 더 높았다. 아디포넥틴과 렙틴, 인슐린, IGF-I, IGFBP-3는 출생체중과 피부두께의 합과 양의 상관관계에 있었다. 출생 시 신장과 양의 상관관계를 보인 호르몬은 아디포넥틴, 렙틴, IGF-I이었다. 아디포넥틴은 렙틴과 양의 상관관계를 보였으나 인슐린, IGF-I, IGFBP-3와는 상관관계가 없었다. IGF-I은 남아보다 여아에서 더 높은 수치를 보였다. 출생 후 1개월 동안 렙틴은 생후 7일까지는 생리적 체중감소와 더불어 감소하다가 그 후 증가하였고 IGF-I 또한 생후 3일에 감소하다가 1개월 후 급격한 증가를 보였다. 결 론 : 아디포넥틴과 렙틴, 인슐린, IGF-I, IGFBP-3 모두 태아의 성장에 중요한 역할을 하며, 아디포넥틴은 인슐린, IGF-I 축과는 다른 기전으로 태아의 성장을 조절한다고 생각할 수 있었다. IGF-I은 남아에서보다 여아에서 더 높은 수치를 보여서 IGF-I의 성별간의 차이가 자궁 내에서도 존재하였다. 생후 1개월 동안의 성장에 다른 호르몬보다 IGF-I 이 더 중요한 역할을 한다는 사실을 알 수 있었다.

Keywords

Acknowledgement

Supported by : Hallym University

References

  1. Haggarty P. Placental regulation of fatty acid delivery and its effect on fetal growth-a review. Placenta 2002;23 Suppl A:S28-38 https://doi.org/10.1053/plac.2002.0791
  2. Gluckman PD. Clinical review 68: The endocrine regulation of fetal growth in late gestation: the role of insulin-like growth factors. J Clin Endocrinol Metab 1995;80:1047-50 https://doi.org/10.1210/jc.80.4.1047
  3. Fowden AL. The role of insulin in prenatal growth. J Dev Physiol 1989;12:173-82
  4. Ong KK, Ahmed ML, Sherriff A, Woods KA, Watts A, Golding J, et al. Cord blood leptin is associated with size at birth and predicts infancy weight gain in humans. ALSP AC study team. Avon longitudinal study of pregnancy and childhood. J Clin Endocrinol Metab 1999;84:1145-8 https://doi.org/10.1210/jc.84.3.1145
  5. Schubring C, Siebler T, Kratzsch J, Englaro P, Blum WF, Triep K, et al. Leptin serum concentrations in healthy neonates within the first week of life: relation to insulin and growth hormone levels, skinfold thickness, body mass index and weight. Clin Endocrinol (Oxf) 1999;51:199-204 https://doi.org/10.1046/j.1365-2265.1999.00761.x
  6. Chandran M, Phillips SA, Ciaraldi T, Henry RR. Adiponectin: more than just another fat cell hormone? Diabetes Care 2003;26:2442-50 https://doi.org/10.2337/diacare.26.8.2442
  7. Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 2001;7:947-53 https://doi.org/10.1038/90992
  8. Yamauchi T, KamonJ, Waki H, Terauchi Y, Kubota N, Hara K, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001;7:941-6 https://doi.org/10.1038/90984
  9. Shimabukuro M, Higa N, Asahi T, Oshiro Y, Takasu N, Tagawa T, et al. Hypoadiponectinemia is closely linked to endothelial dysfunction in man. J Clin Endocrinol Metab 2003;88:3236-40 https://doi.org/10.1210/jc.2002-021883
  10. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, et al. Paradoxical decrease of an adiposespecific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999;257:79-83 https://doi.org/10.1006/bbrc.1999.0255
  11. Stefan N, Bunt JC, Salbe AD, Funahashi T, Matsuzawa Y, Tataranni PA. Plasma adiponectin concentrations in children: relationships with obesity and insulinemia. J Clin Endocrinol Metab 2002;87:4652-6 https://doi.org/10.1210/jc.2002-020694
  12. Tsai PJ, Yu CH, Hsu SP, Lee YH, Chiou CH, Hsu YW et al. Cord plasma concentrations of adiponectin and leptin in healthy term neonates: positive correlation with birthweight and neonatal adiposity. Clin Endocrinol (Oxf) 2004;61:88-93 https://doi.org/10.1111/j.1365-2265.2004.02057.x
  13. Orbak Z, Darcan S, Coker M, Goksen D. Maternal and fetal serum insulin-like growth factor-I (IGF-I), IGF binding protein-3 (IGFBP-3), leptin levels and early postnatal growth in infants born asymmetrically small for gestational age. J Pediatr Endocrinol Metab 2001;14:1119-27
  14. Lofqvist C, Andersson E, Gelander L, Rosberg S, Blum WF, Albertsson Wikland K Reference values for IGF-I throughout childhood and adolescence: a model that accounts simultaneously for the effect of gender, age, and puberty. J Clin Endocrinol Metab 2001;86:5870-6 https://doi.org/10.1210/jc.86.12.5870
  15. Geary MP, Pringle PJ, Rodeck CH, Kingdom JC, Hindmarsh PC. Sexual dimorphism in the growth hormone and Insulinlike growth factor axis at birth. J Clin Endocrinol Metab 2005;88:3708-14 https://doi.org/10.1210/jc.2002-022006
  16. Kajantie E, Hytinantti T, Hovi P, Andersson S. Cord plasma adiponectin: a 20-fold rise between 24 weeks gestation and term. J Clin Endocrinol Metab 2004;89:4031-6 https://doi.org/10.1210/jc.2004-0018
  17. Weiss R, Dufour S, Groszmann A, Petersen K, Dziura J, Taksali SE, et al. Low adiponectin levels in adolescent obesity: a marker of increased intramyocellular lipid accumulation. J Clin Endocrinol Metab 2003;88:2014-8 https://doi.org/10.1210/jc.2002-021711
  18. Yannakoulia M, Yiannakouris N, Bluher S, Matalas AL, Klimis-Zacas D, Mantzoros CS. Body fat mass and macronutrient intake in relation to circulating soluble leptin receptor, free leptin index, adiponectin, and resistin concentrations in healthy humans. J Clin Endocrinol Metab 2003; 88:1730-6 https://doi.org/10.1210/jc.2002-021604
  19. Forsum E, Sadurskis A. Growth, body composition and breast milk intake of Swedish infants during early life. Early Hum Dev 1986;14:121-9 https://doi.org/10.1016/0378-3782(86)90117-9
  20. White DR, Widdowson EM, Woodard HQ, Dickerson JW. The composition of body tissues (II). Fetus to young adult. Br J Radiol 1991;64:149-59 https://doi.org/10.1259/0007-1285-64-758-149
  21. Picaud JC, Rigo J, Nyamugabo K, Milet J, Senterre J. Evaluation of dual-energy X -ray absorptiometry for bodycomposition assessment in piglets and term human neonates. Am J Clin Nutr 1996;63:157-63 https://doi.org/10.1093/ajcn/63.2.157
  22. Harrington TA, Thomas EL, Modi N, Frost G, Coutts GA, Bell JD. Fast and reproducible method for the direct quantitation of adipose tissue in newborn infants. Lipids 2002; 37:95-100 https://doi.org/10.1007/s11745-002-0868-4
  23. Goran MI, Kaskoun M, Shuman WP. Intra-abdominal adipose tissue in young children. Int JObes Relat Metab Disord 1995;19:279-83
  24. Boulton TJ, Dunlop M, Court JM. The growth and development of fat cells in infancy. Pediatr Res 1978;12:908-11 https://doi.org/10.1203/00006450-197809000-00005
  25. Soriguer Escofet FJ, Esteva de Antonio I, Tinahones FJ, Pareja A. Adipose tissue fatty acids and size and number of fat cells from birth to 9 years of age--a cross-sectional study in 96 boys. Metabolism 1996:45:1395-401 https://doi.org/10.1016/S0026-0495(96)90121-3
  26. Kotani Y, Yokota I, Kitamura S, Matsuda J, Naito E, Naito E, et al. Plasma adiponectin levels in newborns are higher than those in adults and positively correlated with birth weight. Clin Endocrinol (Oxf) 2004;61:418-23 https://doi.org/10.1111/j.1365-2265.2004.02041.x
  27. Nishizawa H, Shimomura I, Kishida K, Maeda N, Kuriyama H, Nagaretani H, et al. Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein. Diabetes 2002;51:2734-41 https://doi.org/10.2337/diabetes.51.9.2734
  28. Koistinen HA, Koivisto VA, Andersson S, Karonen SL, Kontula K, Oksanen L, et al. Leptin concentration in cord blood correlates with intrauterine growth. J Clin Endocrinol Metab 1997;82:3328-30 https://doi.org/10.1210/jc.82.10.3328
  29. Hassink SG, de Lancey E, Sheslow DV, Smith-Kirwin SM, O'Connor DM, Considine RV, et al. Placental leptin: an important new growth factor in intrauterine and neonatal development? Pediatrics 1997;100:E1 https://doi.org/10.1542/peds.100.1.1
  30. Freedman DS, Dietz WH, Srinivasan SR, Berenson GS. The relation of overweight to cardiovascular risk factors among children and adolescents: the Bogalusa Heart Study. Pediatrics 1999;103:1175-82 https://doi.org/10.1542/peds.103.6.1175