Genetic Variability of Farmed Olive Flounder (Paralichthys olivaceus) Populations Managed with no Consideration of Genetic Diversity

유전적 다양성이 고려되지 않은 어미 관리에 의한 양식 넙치(Paralichthys olivaceus)의 유전적 다양성의 변화

  • 노재구 (국립수산과학원 육종연구센터) ;
  • 김현철 (국립수산과학원 육종연구센터) ;
  • 박철지 (국립수산과학원 육종연구센터) ;
  • 이정호 (국립수산과학원 육종연구센터) ;
  • 김종현 (국립수산과학원 육종연구센터) ;
  • 이미숙 (국립수산과학원 육종연구센터) ;
  • 김우진 (국립수산과학원 생명공학연구소) ;
  • 김경길 (국립수산과학원 생명공학연구소) ;
  • 명정인 (국립수산과학원 육종연구센터)
  • Received : 2008.11.19
  • Accepted : 2008.12.15
  • Published : 2008.12.31

Abstract

Olive flounder (Paralichthys olivaceus) is one of the most popular farmed fish in Korea. Genetic variability of the fish was investigated by means of microsatellite DNA markers. All of the 8 microsatellite loci were analyzed in this study. For the confirmation of genetic variation during a shift in generation, microsatellite variability was compared within the same hatchery strains but produced in different spawning years. When genetic variability of farmed flounders produced in 2006 and 2007 was compared with that of 2003, a marked reduction of genetic variability was observed in the 2006 and 2007 populations. Mean number of alleles per locus and expected mean heterozygosity decreased from 9.75 and 0.796 (in 2003 population) to 7.78 and 0.785 (in 2006 population), respectively. Moreover, we have observed the distortion of allele frequency. These results show that reduced genetic variability of farmed olive flounder in processed generation has lower numbers of alleles and genetic variability than these of wild fish. Our results suggest that to have a sustainable aquaculture of this species, there is need for scientific broodstock management based on genetic variation and more intensive breeding practices to improve genetic diversity and to avoid detrimental inbreeding effects.

우리나라의 주요 양식 대상종인 넙치에 있어 유전적 조성에 대한 고려없이 구성된 양식 넙치 어미 집단에서 세대의 경과에 따른 집단의 유전적 다양성의 변화를 알아보기 위하여 총 8개의 microsatellite DNA markers를 이용하여 분석하였다. 동일한 수정란 생산업체에서 2003년에 생산된 양식 넙치와, 동일한 집단내에서 생산된 넙치로 어미 그룹이 완전히 교체된 2006년 및 2007년에 생산된 넙치 집단을 비교한 결과, 대립유전자 수와 이형접합기대치의 비교에서 2003년산 집단의 경우 9.75개와 0.796에서 2006년 7.78개와 0.785로 유전적 다양성이 다소 감소되는 경향이었다. 또한 대립유전자의 빈도에 있어서도 몇몇 대립유전자의 경우 소실되거나 빈도에 변화를 보이는 등 왜곡되어 나타났다. 그러나 여러 가지 다양성 지표들에서 수치상 감소를 나타내고 있는 이러한 결과들은 비록 유의적인 수준에서 유전적 다양성의 축소라고는 판단되지 않지만 양식 넙치 집단이 HWE에 어긋나 있어 세대가 진행될수록 집단의 유전적 다양성은 감소될 것으로 예상되었다.

Keywords

Acknowledgement

Grant : 육종기술개발

Supported by : 국립수산과학원

References

  1. 해양수산부. 2006. 어류양식현황조사
  2. Allendorf, F.W. and N. Ryman. 1987. Genetic management of hatchery stocks. In: Ryman, N. and F. Utter (eds), Population Genetics and Fishery Management. University of Washing-ton Press, Seattle, pp. 141-159
  3. Carvalho, G.R. and L. Hauser. 1994. Molecular genetics and the stock concept in fisheries. Rev. Fish Biol. Fish., 4: 326-350 https://doi.org/10.1007/BF00042908
  4. Coimbra, M.R. M.O. Hasegawa, K. Kobayashi, S. Koretsugu, E. Ohara and N. Okamoto. 2001. Twenty microsatellites for the Japanese flounder (Paralichthys olivaceus). Fish. Sci., 67: 358-360 https://doi.org/10.1046/j.1444-2906.2001.00215.x
  5. Cornuet, J.M. and G. Luikart. 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144: 2001-2014
  6. Garza, J.C. and E.G. Williamson. 2001. Detection of reduction in population size using data from microsatellite. Mol. Ecol., 10: 305-318 https://doi.org/10.1046/j.1365-294x.2001.01190.x
  7. Goudet, J. 1995. FSTAT (version 1.2): a computer program to calculate F-statistics. J. Heredity, 86: 485-486 https://doi.org/10.1093/oxfordjournals.jhered.a111627
  8. Kang, J.H., J.K. Noh, J.H. Kim, J.H. Lee, H.C. Kim, K.K. Kim, B.K. Kim and W.J. Lee. 2006. Genetic relationship between broodstocks of olive flounder, Paralichthys llivaceus (Temminck and Schlegel) using microsatellite markers. Aquacul. Res., 37: 701-707 https://doi.org/10.1111/j.1365-2109.2006.01483.x
  9. Kim, W.J., K.K. Kim, J.H. Lee, D.W. Park, J.Y. Park and J.Y. Lee. 2003. Isolation and characterization of polymorphic microsatellite loci in the olive flounder (Paralichthys olivaceus). Mol. Ecol. Notes, 3: 491-493 https://doi.org/10.1046/j.1471-8286.2003.00524.x
  10. Kincaid, H.L. 1983. Inbreeding in fish populations used for aquaculture. Aquaculture, 33: 215-227 https://doi.org/10.1016/0044-8486(83)90402-7
  11. Marshall, T.C., J. Slate, L. Kruuk and J.M. Pemberton. 1998. Statistics confidence for likelihood-based paternity inference in natural populations. J. Mol. Ecol., 7: 639-655 https://doi.org/10.1046/j.1365-294x.1998.00374.x
  12. O'Brien, S. and J. Evermann. 1989. Interactive influence of infectious disease and genetic diversity in natural populations. Trends Ecol. Evol., 3: 254-259 https://doi.org/10.1016/0169-5347(88)90058-4
  13. Raymond, M. and F. Rousset. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Heredity, 86: 248-249 https://doi.org/10.1093/oxfordjournals.jhered.a111573
  14. Sekino, M. and M. Hara. 2000. Isolation and chracterization of microsatellite DNA loci in Japanese Flounder Paralichthys olivaceus (Pleuronectiformes, Pleironectoidei, Paralichthyidae). Mol. Ecol., 9: 2200-2202
  15. Sekino, M., K. Saitoh, T. Yamada, A. Kumagai, M. Hara and Y. Yamashit. 2003. Microsatellite-based pedigree tracing in a Japanese Flounder Paralichthys olivaceus hatchery strain: implications for hatchery management related to stock enhancement program. Aquaculture, 221: 255-263 https://doi.org/10.1016/S0044-8486(02)00667-1
  16. Sekino, M., T. Sugaya, M. Hara and N. Taniguchi. 2004. Relatedness inferred from microsatellite genotypes as tool for broodstock management of Japanese Flounder Paralichthys olivaceus. Aquaculture, 233: 163-172 https://doi.org/10.1016/j.aquaculture.2003.11.008
  17. Suenaga, E. and H. Nakamura. 2005. Evaluation of three methods for effective extraction of DNA from human hair. J. Chroma. B., 820: 137-141 https://doi.org/10.1016/j.jchromb.2004.11.028
  18. Walsh, P.S., D.A. Metzger and R. Higuchi. 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques, 10: 506-513