Overview of Technology for Fixation of Carbon Dioxide Using Microalgae

미세조류를 이용한 이산화탄소 고정화 기술 현황

  • Jeon, Seon-Mi (Department of Pharmaceutical Engineering, College of Medical Life Science, Silla University) ;
  • Kim, In Hae (Department of Pharmaceutical Engineering, College of Medical Life Science, Silla University) ;
  • Ha, Jong-Myung (Department of Pharmaceutical Engineering, College of Medical Life Science, Silla University) ;
  • Lee, Jae-Hwa (Department of Pharmaceutical Engineering, College of Medical Life Science, Silla University)
  • Received : 2007.12.24
  • Accepted : 2008.02.20
  • Published : 2008.04.10

Abstract

In this work we have studied the antifouling properties of the hydrophobic sol-gel modified sensing membrane and its optical properties for sensor application. E. coli JM109, B. cereus 318 and P. pastoris X-33 were cultivated in confocal cultivation dishes with glass surface, respectively. The glass surface was coated with the hydrophobic sol-gels prepared by the dimethoxy-dimethyl-silane (DiMe-DMOS) and tetramethyl-orthosilicate (TMOS). After cultivation, microorganisms adhered on the surface coated with sol-gels and glass surface were dyed by gram-staining method and the numbers of microorganisms were analyzed based on the image data of the scanning electronic microscope (SEM). A great number of microorganisms, about $2{\sim}3{\times}10^4/mm^2$, was adhered on the glass surfaces which no hydrophobic sol-gels were coated. But, the antifouling effect of the hydrophobic sol-gels was large, that microorganisms of less than $200{\sim}300/mm^2$ were adhered on the coated glass surface. The performance of the sensing membranes for detection of pH and dissolved oxygen was enhanced by recoating the light insulation layer prepared with the mixture of the hydrophobic sol-gel and graphite particles.

온실가스로 인해 발생한 지구 온난화 현상은 최근 몇 년 동안 심각한 환경문제를 야기했다. 온실가스 중 가장 큰 비중을 차지하는 것은 이산화탄소이다. 이산화탄소의 처리 방법 중 하나인 미세조류의 광합성을 통한 이산화탄소 고정화는 화력발전소로부터 화석연료의 사용을 통해 나오는 이산화탄소 감소를 도와준다. 이러한 미세조류는 빠른 성장력을 지니고 있고, 다양한 환경에서 성장이 가능하다는 장점이 있다. 따라서 미세조류의 이용에 있어 고농도의 이산화탄소, 낮은 pH, 산성 가스 등에 강한 내성을 지닌 미세조류에 대한 연구와 미세조류의 대량배양을 통해 효율성을 높일 수 있는 생물반응기의 연구가 선행되어야 한다. 앞으로 생물공학기술의 발달로 미세조류의 대량배양에 의한 이산화탄소 저감과 동시에 미세조류로부터 고부가 가치의 자원을 생산한다면 생물 산업의 발전을 촉진할 수 있다.

Keywords

References

  1. H. Rodhe, Science, 248, 1217 (1990) https://doi.org/10.1126/science.248.4960.1217
  2. J. K. Jeon, Y. K. Park, and S. K. Ihm, J. Korean Ind. Eng. Chem., 14, 1 (2003)
  3. S. B. Lee, C. B. Park, and I. S. Suk, Chem. Ind. Technol., 13, 13 (1995)
  4. I. Karube, T. Takeuchi, and D. J. Barnes, Adv. Biochem. Eng. Biotechnol., 46, 63 (1992)
  5. G. Torzillo, B. Pushparaj, F. Bocci, W. Balloni, R. Materassi, and G. Florenzano, Biomass, 11, 61 (1986) https://doi.org/10.1016/0144-4565(86)90021-1
  6. M. Yanagi, Y. Watanabe, and H. Saiki, Energy Convers. Mgmt., 36, 713 (1995) https://doi.org/10.1016/0196-8904(95)00104-L
  7. N. Sakaki, Y. Sakamoto, M. Chihara, and I. Karube, Energy convers. Mgmt., 36, 693 (1995) https://doi.org/10.1016/0196-8904(95)00100-R
  8. Q. Hu, N. Kurano, M. Kawachi, I. Iwasaki, and S. Miyachi, Appl. Microbiol. Biotechnol., 49, 655 (1998) https://doi.org/10.1007/s002530051228
  9. N. Hamagata, T. Takeuchi, Y. Fukuju, D. J. Barnes, and I. Karube, Phytochem., 31, 3345 (1993) https://doi.org/10.1016/0031-9422(92)83682-O
  10. A. Hamasaki, N. Shioji, Y. Ikuta, Y. Hukuda, T. Makita, K. Hirayama, H. Matuzaki, T. Tukamato, and S. Sasake, Appl. Biochem. Biotechnol., 45, 799 (1994) https://doi.org/10.1007/BF02941850
  11. E. D. Laws and K. L. Berning, Biotech. Bioeng., 37, 936 (1991) https://doi.org/10.1002/bit.260371007
  12. J. L. Stauber, Aquat. Toxicol., 41, 213 (1998) https://doi.org/10.1016/S0166-445X(97)00087-8
  13. A. H. Daranas, M. Norte, and J. J. Fernandez, Toxicon., 39, 1101 (2001) https://doi.org/10.1016/S0041-0101(00)00255-5
  14. Y. H. Shon, K. S. Nam, and M. K. Kim, J. Microbiol. Biotechnol., 14, 158 (2004)
  15. R. J. Radmer, Bioscience, 46, 263 (1996) https://doi.org/10.2307/1312833
  16. N, Sakai, Y. Sakamoto, N. Kishimoto, M. Chihara, and I. Karue, Energy Convers. Mgmt., 36, 693 (1995) https://doi.org/10.1016/0196-8904(95)00100-R
  17. N. Kurano, H. Ikemoto, H. Miyashita, T. Hasegawa, H. Hata, and S. Miyachi, Energy Convers. Mgmt., 36, 689 (1995) https://doi.org/10.1016/0196-8904(95)00099-Y
  18. S. Miyairi, Energy Convers. Mgmt., 36, 763 (1995) https://doi.org/10.1016/0196-8904(95)00116-U
  19. H. Matsumoto, N. Shioji, A. Hamasaki, Y. Ikuta, Y. Fukuda, M. Sato, N. Endo, and T. Tsukamoto, Appl. Biochem. Biotechnol., 51, 681 (1995) https://doi.org/10.1007/BF02933469
  20. C. G. Lee, Biotechnol. Bioprocess Eng., 4, 78 (1999) https://doi.org/10.1007/BF02931920
  21. A. Bolsunovsky and V. Zhavoronokov, SAE Technical Paper Series 961361, 1 (1996)
  22. M. A. Borowitzka, J. Mar. Biotechnol., 4, 185 (1996)
  23. M. Javanmardian and B. O. Palsson, Adv. Space Res., 12, 231 (1992)
  24. J. L. Liu and S. L. Zhang, J. Biotechnol., 16, 119 (2000)
  25. E. Molina, J. Fernandez, F. G. Acien, and Y. Chisti, J. Biotechnol., 92, 113 (2001) https://doi.org/10.1016/S0168-1656(01)00353-4
  26. J. C. Ogbonna and H. Tanaka, Chemtech., 27, 43 (1997)
  27. M. R. Tredici and G. Chini Zittelli, Biotechnol. Bioeng., 57, 187 (1998) https://doi.org/10.1002/(SICI)1097-0290(19980120)57:2<187::AID-BIT7>3.0.CO;2-J
  28. J. Y. Lee, T. S. Kwon, H. J. Kim, and J. W. Yang, Kor. J. Biotechnol. Bioeng., 18, 340 (2003)
  29. P. Carlozzi and G. Torzillo, Appl. Microbiol. Biotechnol., 45, 18 (1996) https://doi.org/10.1007/s002530050642
  30. Y. Watanabe and D. O. Hall, Appl. Microbiol. Biotechnol., 44, 693 (1996)
  31. K. L. Terry and L. P. Raymond, Enzyme Microb. Technol., 7, 474 (1985) https://doi.org/10.1016/0141-0229(85)90148-6
  32. A. B. Michael, J. Biotechnol., 70, 313 (1999) https://doi.org/10.1016/S0168-1656(99)00083-8
  33. K. Mori, Biotechnol. Bioeng. Symp., 15, 331 (1985)
  34. W. Yongmanitchai and O. P. Ward, J. Am. Oil Chem. Soc., 69, 584 (1992) https://doi.org/10.1007/BF02636113
  35. G. Torzillo, P. Carlozzi, B. Pushparaj, E. Montaini, and R. Materassi, Biotechnol. Bioeng., 42, 891 (1993) https://doi.org/10.1002/bit.260420714
  36. C. G. Lee and B. O. Palsson, Biotechnol. Lett., 17, 1149 (1995) https://doi.org/10.1007/BF00128376
  37. Q. Hu, H. Guterman, and A. Richmond, Biotechnol. Bioeng., 51, 51 (1996) https://doi.org/10.1002/(SICI)1097-0290(19960705)51:1<51::AID-BIT6>3.0.CO;2-#
  38. J. Degen, A. Uebele, A. Retze, U. Schmid-Staiger, and W. Trosch, J. Biotechnol., 92, 89 (2001) https://doi.org/10.1016/S0168-1656(01)00350-9
  39. H. Takano, H. Furu-Une, J. G. Burgess, E. Manabe, M. Hirano, M. Okazaki, and T. Matsunaga, Appl. Biochem. Biotech., 39, 159 (1993) https://doi.org/10.1007/BF02918986
  40. Y. Watanabe, J. Noue, and D. O. Hall, Biotechnol. Bioeng., 47, 261 (1995) https://doi.org/10.1002/bit.260470218
  41. R. Samon and A. Leduy, J. Chem. Eng., 63, 105 (1985)
  42. E. A. Laws and J. L. Berning, Biotechnol. Bioeng., 37, 936 (1991) https://doi.org/10.1002/bit.260371007
  43. K. D. Sung, J. S. Lee, C. S. Shin, and S. C. Park, J. Microbiol. Biotechnol., 8, 409 (1998)
  44. S. K. Kim, H. C. Baek, H. G. Byun, O. J. Kang, and J. B. Kim, J. Kor. Fish. Soc., 34, 260 (2001)
  45. K. Lee and C. G. Lee, Biotechnol. Bioprocess Eng., 6, 194 (2001) https://doi.org/10.1007/BF02932550
  46. D. S. Joo and S. Y. Cho, J. East Coast. Res., 9, 89 (1999)
  47. K. Gao, J. Appl. Phycol., 10, 37 (1998) https://doi.org/10.1023/A:1008014424247
  48. H. Takenake, Y. Yamaguchi, S. Sakaki, K. Watarai, N. Tanaka, M. Hori, H. Seki, M. Tsuchida, A. Yamada, T. Nichimori, and T. Morinaga, Food Chem. Toxicol., 36, 1073 (1998) https://doi.org/10.1016/S0278-6915(98)00089-1
  49. D. N. Tiwari, New Phytol., 81, 853 (1978)
  50. V. Veloso, A. Reis, L. Gouveia, H. L. Fernandes, J. A. Empis, and J. M. Novais, Bioresour. Technol., 38, 115 (1991) https://doi.org/10.1016/0960-8524(91)90141-6
  51. V. Brower, Nat. Biotechnol., 16, 728 (1998) https://doi.org/10.1038/nbt0898-728
  52. J. A. Running, R. J. Huss, and P. T. Olson, J. Appl. Phycol., 6, 99 (1994) https://doi.org/10.1007/BF02186063
  53. T. Katano and S. I. Nakano, J. Sea Res., 55, 182 (2006) https://doi.org/10.1016/j.seares.2005.10.007
  54. O. Ciferri, Microbiol. Rev., 47, 551 (1983)
  55. R. A. Kay, Crit. Rev. Food Sci. Nutr., 30, 555 (1991) https://doi.org/10.1080/10408399109527556
  56. T. Enoki, H. Sagawa, T. Tominaga, N. Eiji, K. Nobuto, T. Sakai, and F. G. K. Gao, J. Appl. Phycol., 10, 37 (1998) https://doi.org/10.1023/A:1008014424247
  57. C. Vilchez, I. Garbayo, M. V. Lobato, and J. M. Vega, Enzyme Microb. Technol., 20, 562 (1997) https://doi.org/10.1016/S0141-0229(96)00208-6
  58. H. S. Kim, C. H. Kim, M. C. Kwon, Y. K. Song, J. H. Cho, H. G. Gwak, B. Y. Hwang, J. C. Kim, and H. Y. Lee, J. Kor. Fish. Soc., 39, 318 (2006) https://doi.org/10.5657/kfas.2006.39.4.318
  59. A. H. Daranas, M. Norte, and J. J. Fernandez, Toxicon., 39, 1101 (2001) https://doi.org/10.1016/S0041-0101(00)00255-5
  60. Y. H. Shon, K. S. Nam, and M. K. Kim, J. Microbiol. Biotechnol., 14, 158 (2004)
  61. M. K. Park, S. J. Lee, H. H. Suh, H. S. Kim, Y. H. Kim, B. D. Yoon, and H. M. Oh, Algae, 13, 227 (1998)
  62. J. H. Ahn, S. S. Kim, T. H. Kim, J. Y. Lee, S. J. Ohh, J. H. Lee, and H. Y. Lee, Kor. J. Appl. Microbiol. Biotechnol., 24, 519 (1996)
  63. K. L. Kadam, Energy Convers. Mgmt., 38, S505 (1997) https://doi.org/10.1016/S0196-8904(96)00318-4
  64. J. S. Lee, D. G. Kim, J. P. Lee, S. C. Park, J. H. Joh, and S. J. Ohh, J. Microbiol. Biotechnol., 11, 772 (2001)