생체복합체의 재생패각 합성전략: 참굴 패각의 변형에 따른 키틴 합성 및 패각재생

Biomineralization Strategy of Biocomposites on Regenerated Shell: Chitin Synthesis and Regenerated Shell Formtation by Deformed Oyster Shell

  • 이승우 (KAIST 생명화학공학과) ;
  • 박승빈 (KAIST 생명화학공학과) ;
  • 용동희 (서강대학교 공과대학 화공생명공학과) ;
  • 최청송 (서강대학교 공과대학 화공생명공학과)
  • Lee, Seungwoo (Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Park, Seungbin (Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Yeong, Donghee (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Choi, Cheongsong (Department of Chemical and Biomolecular Engineering, Sogang University)
  • 투고 : 2007.12.27
  • 심사 : 2008.03.10
  • 발행 : 2008.06.30

초록

생체복합재료인 참굴 (Crassostrea gigas) 패각은 생성되는 형태에 따라 정상패각과 재생패각으로 구분되었다. 산과 알칼리를 이용한 탈 석회화과정 및 단백질제거반응을 통해 재생패각 내에서 얻어진 유기막이 키틴 특성을 가지고 있음을 FT-IR (Fourier transform infrared spectrometer)과 XRD (X-ray Diffractometer)를 통해 확인하였다. 불용성단백질의 함량은 정상패각이 재생패각과 비교하여 두배 이상 이었던 반면 수용성단백질 2차구조는 재생패각의 경우 random과 같은 불규칙구조가 많은 부분을 차지하고 있음을 확인할 수 있었다. 수용성단백질의 아미노산 조성과 단백질 2차구조분석을 통해 재생패각의 탄산칼슘 합성전략을 분자수준에서 논의하였고 재생패각 형성과 관련된 생광물화 전략이 패각의 재료학적 특성에 미치는 결과로써 해석되었다.

The normal shell and the regenerated oyster shell, Crassostrea gigas, are separated according to the characteristics of inner shell morphology. To study characteristics of chitin obtained from the regenerated shell, chitin prepared by acid and alkali process is analyzed by FT-IR (Fourier transform infrared spectrometer) and XRD (X-ray Diffractometer). The content of insoluble protein in the normal shell was more than doubled as compared with that in the regenerated shell. A comparison of secondary structure of the normal shell and the regenerated shell revealed that the content of random of the regenerated shell was above 47%, indicating an amount in the structural unordered state. Through amino acid composition analysis and secondary protein structure of soluble protein isolated from the normal shell and the regenerated shell, it was found that there are differences in biomineralization strategy of the regenerated shell as compared to the normal shell. The relatively low hardness of the regenerated shell is caused by the change of amino acid composition and ordered secondary protein structure as compared to hardness of the normal shell.

키워드

참고문헌

  1. Willis, J., "Cutcular Proteins in Insects and Crustaceans," Am. Zool., 39 600-609(1999) https://doi.org/10.1093/icb/39.3.600
  2. Jeuniaux, C., in; M. Florkin and E.H. Stotz (Ed.), Comprehensive Biochemistry (Chitinious Structure), Elsevier, New York, 595-631(1971)
  3. Weiner, S. and Traub, W., "X-ray Diffraction Study of the Insoluble Organic Matrix of Mollusk Shell," FEBS Lett., 111, 311-318 (1980) https://doi.org/10.1016/0014-5793(80)80817-9
  4. Fereidoon, S., Janak, K. and Jeon, Y. J., "Food Applications of Chitin and Chitosans," Trends in Food Sci. & Tech., 10, 37-51 (1999) https://doi.org/10.1016/S0924-2244(99)00017-5
  5. Park, J. K., "Industrial Application of Chitinase and Chtosanase," J. Chitin & Chitosan, 7, 1-7(2002)
  6. Shagemasa, Y. and Minami, S., "Applications of Chitn and Chtosan for Biomaterials," Biotech. Gen. Engi. Rev., 13, 1353-1359(1995)
  7. Kifune, K., in; C. J. Brine, P. A. Sandford and J. P. Zikakis (Ed.), "Advances in Chitin and Chitosan," Elsevier Science, London, 9- 15(1992)
  8. Kifune, K., Medical application of chitin/chitosan, Gibodang Press, Japan(1994)
  9. Hirano, S., Nagamura, K., Zhang, M., Kim, S. K., Chung, B. G., Yoshikawa, M. and Midorikawa, T., "Chitosan Staple Fibers and Their Chemical Modification with Some Aldehydes," Carabohyrate Polymer, 38, 293-298(1999) https://doi.org/10.1016/S0144-8617(98)00126-X
  10. Jeuniaux, C., in S. P. Colowick and N. O. Kaplan (Ed.) Methods in enzymology, Acad. Press, New York, 644-650(1966)
  11. Falini, G., Weiner, S. and Addadi, L., "Chitin-Silk Fibroin Interactions: Relevance to Calcium Carbonate Formation in Invertebrates," Calcified Tissue International, 72, 548-554(2003) https://doi.org/10.1007/s00223-002-1055-0
  12. Lee, S. W. and Choi, C. S., "The Correlation Between Organic Matrices and Biominerals (myostracal prism and folia) of the Adult Oyster Shell," Micron, 38, 58-62(2007) https://doi.org/10.1016/j.micron.2006.03.018
  13. Kranz, B., Burck, J., Franzreb, M., Koster, R. and Ulrich, A. S., "Circular Dichroism Analysis of Peniciline G Acylase Covalently Immobilized on Silica Nanoparticles," J. Collid. Interface Sci. 316, 413-419(2007) https://doi.org/10.1016/j.jcis.2007.08.062
  14. Blake, J. A. and Evans, J. W., "Polydora and Related Genera as Bores in Mollusk Shells and Other Calcareous Substrates," The Veliger, 15, 235-249(1973)
  15. Kwon, J. K., Kong, B. G. and Jang, M. K., "Thermdynamic Characterzation of $\alpha-,\;\beta-,\;and\;\gamma$-Chitin," J. Chitin & Chitosan, 7, 154-160(2002)
  16. Mann, S., Biomineralization principles and concepts in bioinorganic materials chemistry. 1st ed., Oxford University Press, New York(2001)
  17. Lowenstam, H. A. and Weiner, S., On biomineralization. 1st ed., Oxford University Press, New York(1989)
  18. Davis, J. G., Oberholtzer, J. C., Burns, F. R. and Greene, M. L., "Molecular Cloning and Characterization of an Inner Ear-Specific Structural Protein," Science, 267, 1031-1034(1995) https://doi.org/10.1126/science.7863331
  19. Bowen, C. E. and Tang, H., "Conchiolin-Protein in Aragonite Shells of Mollusks," Comp. Biochem. Physiol., 115A (4), 269-275(1996)
  20. Badariotti, F., Thuau, R., Lelong, C., Dubos, M. P. and Favrel, P., "Characterization of An Atypical Family 18 Chitinase from the Oyster Crassostrea gigas: Evidence for a Role in Early Development and Immunity," Dev. & Comp. Immunol., 31, 559-570(2007) https://doi.org/10.1016/j.dci.2006.09.002
  21. Lee, S. W., Hong, S. M. and Choi, C. S., "Characteristics of Calcification Processes in Embryos and Larvae of the Pacific Oyster, Crassostrea gigas," Bull. Mar. Sci. 78, 309-316(2006)
  22. Addadi, L. and Weiner, S., "Interactions Between Acidic Proteins and Crystals: Stereochemical Requirements in Biomineralization," Proc. Natl. Acad. Sci. U.S.A., 82, 4110-4114(1985)
  23. Medakovic, D., Popovic, S., Crzeta, B., Plazonic, M. and Hrs- Brenko, M., "X-ray Diffraction Study of Calcification Processes in Embryos and Larvae of the Brooding Oyster Ostrea edulis," Mar. Biol., 129, 615-623(1997) https://doi.org/10.1007/s002270050204
  24. Mount, A. S., Wheeler, A. P., Paradkar, R. P. and Snider, D., "Hemocyte-Mediated Shell Mineralization in the Eastern Oyster," Science, 304, 297-300(2004) https://doi.org/10.1126/science.1090506
  25. Cho, S. M, "Effect of Polycyclic Aromatic Hydrocarbons (PAHs) on the Pacific Oyster, Crassostrea gigas," Ph.D. Dissertation- Gyeongsang National University, Korea(2006)