Acknowledgement
Supported by : Biomedical Research Council (BMRC), Institute of Bioengineering and Nanotechnology (IBN)
References
- Apte, M.V., Haber, P.S., Applegate, T.L., Norton, I.D., McCaughan, G.W., Korsten, M.A., Pirola, R.C., and Wilson, J.S. (1998). Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut 43, 128-133 https://doi.org/10.1136/gut.43.1.128
- Baroni, G.S., D'Ambrosio, L., Curto, P., Casini, A., Mancini, R., Jezequel, A.M., and Benedetti, A. (1996). Interferon gamma decreases hepatic stellate cell activation and extracellular matrix deposition in rat liver fibrosis. Hepatology 23, 1189-1199 https://doi.org/10.1002/hep.510230538
- Bermano, G., Shepherd, R.K., Zehner, Z.E., and Hesketh, J.E. (2001). Perinuclear mRNA localisation by vimentin 3′- untranslated region requires a 100 nucleotide sequence and intermediate filaments. FEBS Lett. 497, 77-81 https://doi.org/10.1016/S0014-5793(01)02438-3
- Bignami, A., Eng, L.F., Dahl, D., and Uyeda, C.T. (1972). Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res. 43, 429-435 https://doi.org/10.1016/0006-8993(72)90398-8
- Blechingberg, J., Holm, I.E., Nielsen, K.B., Jensen, T.H., Jorgensen, A. L., and Nielsen, A.L. (2007). Identification and characterization of GFAPkappa, a novel glial fibrillary acidic protein isoform. Glia 55, 497-507 https://doi.org/10.1002/glia.20475
- Buniatian, G., Gebhardt, R., Schrenk, D., and Hamprecht, B. (1996a). Colocalization of three types of intermediate filament proteins in perisinusoidal stellate cells: glial fibrillary acidic protein as a new cellular marker. Eur. J. Cell. Biol. 70, 23-32
- Buniatian, G., Hamprecht, B., and Gebhardt, R. (1996b). Glial fibrillary acidic protein as a marker of perisinusoidal stellate cells that can distinguish between the normal and myofibroblast- like phenotypes. Biol. Cell 87, 65-73 https://doi.org/10.1016/S0248-4900(97)89838-3
- Buniatian, G., Traub, P., Albinus, M., Beckers, G., Buchmann, A., Gebhardt, R., and Osswald, H. (1998). The immunoreactivity of glial fibrillary acidic protein in mesangial cells and podocytes of the glomeruli of rat kidney in vivo and in culture. Biol. Cell 90, 53-61 https://doi.org/10.1016/S0248-4900(98)80232-3
- Chiu, F.C., and Goldman, J.E. (1984). Synthesis and turnover of cytoskeletal proteins in cultured astrocytes. J. Neurochem. 42, 166-174 https://doi.org/10.1111/j.1471-4159.1984.tb09713.x
- Condorelli, D.F., Nicoletti, V.G., Barresi, V., Conticello, S.G., Caruso, A., Tendi, E.A., and Giuffrida Stella, A.M. (1999a). Structural features of the rat GFAP gene and identification of a novel alternative transcript. J. Neurosci. Res. 56, 219-228 https://doi.org/10.1002/(SICI)1097-4547(19990501)56:3<219::AID-JNR1>3.0.CO;2-2
- Condorelli, D.F., Nicoletti, V.G., Dell'Albani, P., Barresi, V., Caruso, A., Conticello, S.G., Belluardo, N., and Giuffrida Stella, A.M. (1999b). GFAPbeta mRNA expression in the normal rat brain and after neuronal injury. Neurochem. Res. 24, 709-714 https://doi.org/10.1023/A:1021016828704
- Eng, L.F., Vanderhaeghen, J.J., Bignami, A., and Gerstl, B. (1971). An acidic protein isolated from fibrous astrocytes. Brain Res. 28, 351-354 https://doi.org/10.1016/0006-8993(71)90668-8
- Feinstein, D.L., Weinmaster, G.A., and Milner, R.J. (1992). Isolation of cDNA clones encoding rat glial fibrillary acidic protein: expression in astrocytes and in Schwann cells. J. Neurosci. Res. 32, 1-14 https://doi.org/10.1002/jnr.490320102
- Fuchs, E., and Weber, K. (1994). Intermediate filaments: structure, dynamics, function, and disease. Annu. Rev. Biochem. 63, 345-382 https://doi.org/10.1146/annurev.bi.63.070194.002021
- Galea, E., Dupouey, P., and Feinstein, D.L. (1995). Glial fibrillary acidic protein mRNA isotypes: expression in vitro and in vivo. J. Neurosci. Res. 41, 452-461 https://doi.org/10.1002/jnr.490410404
- Gao, Y., and Sztul, E. (2001). A novel interaction of the Golgi complex with the vimentin intermediate filament cytoskeleton. J. Cell Biol. 152, 877-894 https://doi.org/10.1083/jcb.152.5.877
- Gard, A.L., White, F.P., and Dutton, G.R. (1985). Extra-neural glial fibrillary acidic protein (GFAP) immunoreactivity in perisinusoidal stellate cells of rat liver. J. Neuroimmunol. 8, 359-375 https://doi.org/10.1016/S0165-5728(85)80073-4
- Herrmann, H., and Aebi, U. (1998). Structure, assembly, and dynamics of intermediate filaments. Subcell. Biochem. 31, 319-362
- Iredale, J.P. (2001). Hepatic stellate cell behavior during resolution of liver injury. Semin. Liver Dis. 21, 427-436 https://doi.org/10.1055/s-2001-17557
- Mignone, F., Gissi, C., Liuni, S., and Pesole, G. (2002). Untranslated regions of mRNAs. Genome Biol. 3, Review S0004
- Neubauer, K., Knittel, T., Aurisch, S., Fellmer, P., and Ramadori, G. (1996). Glial fibrillary acidic protein--a cell type specific marker for Ito cells in vivo and in vitro. J. Hepatol. 24, 719-730 https://doi.org/10.1016/S0168-8278(96)80269-8
- Nielsen, A.L., and Jorgensen, A.L. (2004). Self-assembly of the cytoskeletal glial fibrillary acidic protein is inhibited by an isoform-specific C terminus. J. Biol. Chem. 279, 41537- 41545 https://doi.org/10.1074/jbc.M406601200
- Nielsen, A.L., Holm, I.E., Johansen, M., Bonven, B., Jorgensen, P., and Jorgensen, A.L. (2002). A new splice variant of glial fibrillary acidic protein, GFAP epsilon, interacts with the presenilin proteins. J. Biol. Chem. 277, 29983-29991 https://doi.org/10.1074/jbc.M112121200
- Niki, T., De Bleser, P.J., Xu, G., Van Den Berg, K., Wisse, E., and Geerts, A. (1996). Comparison of glial fibrillary acidic protein and desmin staining in normal and CCl4-induced fibrotic rat livers. Hepatology 23, 1538-1545 https://doi.org/10.1002/hep.510230634
- Reeves, S.A., Helman, L.J., Allison, A., and Israel, M.A. (1989). Molecular cloning and primary structure of human glial fibrillary acidic protein. Proc. Natl. Acad. Sci. USA 86, 5178−5182
- Regoli, M., Orazioli, D., Gerli, R., and Bertelli, E. (2000). Glial fibrillary acidic protein (GFAP)-like immunoreactivity in rat endocrine pancreas. J. Histochem. Cytochem. 48, 259-266 https://doi.org/10.1177/002215540004800211
- Riccalton-Banks, L., Bhandari, R., Fry, J., and Shakesheff, K.M. (2003). A simple method for the simultaneous isolation of stellate cells and hepatocytes from rat liver tissue. Mol. Cell. Biochem. 248, 97-102 https://doi.org/10.1023/A:1024184826728
- Rockey, D.C., Maher, J.J., Jarnagin, W.R., Gabbiani, G., and Friedman, S.L. (1992). Inhibition of rat hepatic lipocyte activation in culture by interferon-gamma. Hepatology 16, 776-784 https://doi.org/10.1002/hep.1840160325
- Roelofs, R.F., Fischer, D.F., Houtman, S.H., Sluijs, J.A., Van Haren, W., Van Leeuwen, F.W., and Hol, E.M. (2005). Adult human subventricular, subgranular, and subpial zones contain astrocytes with a specialized intermediate filament cytoskeleton. Glia 52, 289-300 https://doi.org/10.1002/glia.20243
- Ross, J. (1995). mRNA stability in mammalian cells. Microbiol. Rev. 59, 423-450
- Sancho-Tello, M., Valles, S., Montoliu, C., Renau-Piqueras, J., and Guerri, C. (1995). Developmental pattern of GFAP and vimentin gene expression in rat brain and in radial glial cultures. Glia 15, 157-166 https://doi.org/10.1002/glia.440150208
- Tiggelman, A.M., Boers, W., Linthorst, C., Sala, M., and Chamuleau, R.A. (1995). Collagen synthesis by human liver (myo)fibroblasts in culture: evidence for a regulatory role of IL-1 beta, IL-4, TGF beta and IFN gamma. J. Hepatol. 23, 307-317
- Vogel, S., Piantedosi, R., Frank, J., Lalazar, A., Rockey, D.C., Friedman, S.L., and Blaner, W.S. (2000). An immortalized rat liver stellate cell line (HSC-T6): a new cell model for the study of retinoid metabolism in vitro. J. Lipid Res. 41, 882-893
- Zelenika, D., Grima, B., Brenner, M., and Pessac, B. (1995). A novel glial fibrillary acidic protein mRNA lacking exon 1. Brain Res. Mol. Brain Res. 30, 251-258 https://doi.org/10.1016/0169-328X(95)00010-P