Glial Fibrillary Acidic Protein Splice Variants in Hepatic Stellate Cells - Expression and Regulation

  • Received : 2007.07.30
  • Accepted : 2007.11.16
  • Published : 2008.05.31

Abstract

The glial fibrillary acidic protein (GFAP) is traditionally used as a marker for astrocytes of the brain, and more recently for the hepatic stellate cells (HSCs) of the liver. Several GFAP splice variants have been previously reported in the astrocytes of the CNS and in the non-myelinating Schwann cells of the PNS. In this study, we investigate whether GFAP splice variants are present in the HSCs and their expression as a function of HSCs activation. Furthermore, the regulation of these transcripts upon treatment with interferon gamma ($IFN-{\gamma}$) will be explored. Using semi-quan-titative RT-PCR and real-time PCR, we examine the expression and regulation of GFAP splice variants in HSCs as well as their respective half-life. We discover that most of the GFAP splice variants ($GFAP{\alpha}$, ${\beta}$, ${\delta}$, ${\varepsilon}$ and $\kappa$) found in the neural system are also expressed in quiescent and culture-activated primary HSCs. Interestingly, $GFAP{\alpha}$ is the predominant form in quiescent and culture-activated primary HSCs, while $GFAP{\beta}$, predominates in the SV40-immortalized activated HSC-T6. $GFAP{\delta}$, ${\varepsilon}$ and ${\kappa}$ have similar half-lives of 10 hours, while $GFAP{\beta}$ has a half-life of 17 hours. Treatment of HSC-T6 with $IFN-{\gamma}$ results in a significant 1.29-fold up-regulation of $GFAP{\alpha}$ whereas the level of the other transcripts remains unchanged. In summary, $GFAP{\alpha}$, ${\beta}$, ${\delta}$, ${\varepsilon}$ and $\kappa$ are present in HSCs. They are differentially regulated on the transcription level, implying a role of the 5' and 3' untranslated regions.

Keywords

Acknowledgement

Supported by : Biomedical Research Council (BMRC), Institute of Bioengineering and Nanotechnology (IBN)

References

  1. Apte, M.V., Haber, P.S., Applegate, T.L., Norton, I.D., McCaughan, G.W., Korsten, M.A., Pirola, R.C., and Wilson, J.S. (1998). Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut 43, 128-133 https://doi.org/10.1136/gut.43.1.128
  2. Baroni, G.S., D'Ambrosio, L., Curto, P., Casini, A., Mancini, R., Jezequel, A.M., and Benedetti, A. (1996). Interferon gamma decreases hepatic stellate cell activation and extracellular matrix deposition in rat liver fibrosis. Hepatology 23, 1189-1199 https://doi.org/10.1002/hep.510230538
  3. Bermano, G., Shepherd, R.K., Zehner, Z.E., and Hesketh, J.E. (2001). Perinuclear mRNA localisation by vimentin 3′- untranslated region requires a 100 nucleotide sequence and intermediate filaments. FEBS Lett. 497, 77-81 https://doi.org/10.1016/S0014-5793(01)02438-3
  4. Bignami, A., Eng, L.F., Dahl, D., and Uyeda, C.T. (1972). Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res. 43, 429-435 https://doi.org/10.1016/0006-8993(72)90398-8
  5. Blechingberg, J., Holm, I.E., Nielsen, K.B., Jensen, T.H., Jorgensen, A. L., and Nielsen, A.L. (2007). Identification and characterization of GFAPkappa, a novel glial fibrillary acidic protein isoform. Glia 55, 497-507 https://doi.org/10.1002/glia.20475
  6. Buniatian, G., Gebhardt, R., Schrenk, D., and Hamprecht, B. (1996a). Colocalization of three types of intermediate filament proteins in perisinusoidal stellate cells: glial fibrillary acidic protein as a new cellular marker. Eur. J. Cell. Biol. 70, 23-32
  7. Buniatian, G., Hamprecht, B., and Gebhardt, R. (1996b). Glial fibrillary acidic protein as a marker of perisinusoidal stellate cells that can distinguish between the normal and myofibroblast- like phenotypes. Biol. Cell 87, 65-73 https://doi.org/10.1016/S0248-4900(97)89838-3
  8. Buniatian, G., Traub, P., Albinus, M., Beckers, G., Buchmann, A., Gebhardt, R., and Osswald, H. (1998). The immunoreactivity of glial fibrillary acidic protein in mesangial cells and podocytes of the glomeruli of rat kidney in vivo and in culture. Biol. Cell 90, 53-61 https://doi.org/10.1016/S0248-4900(98)80232-3
  9. Chiu, F.C., and Goldman, J.E. (1984). Synthesis and turnover of cytoskeletal proteins in cultured astrocytes. J. Neurochem. 42, 166-174 https://doi.org/10.1111/j.1471-4159.1984.tb09713.x
  10. Condorelli, D.F., Nicoletti, V.G., Barresi, V., Conticello, S.G., Caruso, A., Tendi, E.A., and Giuffrida Stella, A.M. (1999a). Structural features of the rat GFAP gene and identification of a novel alternative transcript. J. Neurosci. Res. 56, 219-228 https://doi.org/10.1002/(SICI)1097-4547(19990501)56:3<219::AID-JNR1>3.0.CO;2-2
  11. Condorelli, D.F., Nicoletti, V.G., Dell'Albani, P., Barresi, V., Caruso, A., Conticello, S.G., Belluardo, N., and Giuffrida Stella, A.M. (1999b). GFAPbeta mRNA expression in the normal rat brain and after neuronal injury. Neurochem. Res. 24, 709-714 https://doi.org/10.1023/A:1021016828704
  12. Eng, L.F., Vanderhaeghen, J.J., Bignami, A., and Gerstl, B. (1971). An acidic protein isolated from fibrous astrocytes. Brain Res. 28, 351-354 https://doi.org/10.1016/0006-8993(71)90668-8
  13. Feinstein, D.L., Weinmaster, G.A., and Milner, R.J. (1992). Isolation of cDNA clones encoding rat glial fibrillary acidic protein: expression in astrocytes and in Schwann cells. J. Neurosci. Res. 32, 1-14 https://doi.org/10.1002/jnr.490320102
  14. Fuchs, E., and Weber, K. (1994). Intermediate filaments: structure, dynamics, function, and disease. Annu. Rev. Biochem. 63, 345-382 https://doi.org/10.1146/annurev.bi.63.070194.002021
  15. Galea, E., Dupouey, P., and Feinstein, D.L. (1995). Glial fibrillary acidic protein mRNA isotypes: expression in vitro and in vivo. J. Neurosci. Res. 41, 452-461 https://doi.org/10.1002/jnr.490410404
  16. Gao, Y., and Sztul, E. (2001). A novel interaction of the Golgi complex with the vimentin intermediate filament cytoskeleton. J. Cell Biol. 152, 877-894 https://doi.org/10.1083/jcb.152.5.877
  17. Gard, A.L., White, F.P., and Dutton, G.R. (1985). Extra-neural glial fibrillary acidic protein (GFAP) immunoreactivity in perisinusoidal stellate cells of rat liver. J. Neuroimmunol. 8, 359-375 https://doi.org/10.1016/S0165-5728(85)80073-4
  18. Herrmann, H., and Aebi, U. (1998). Structure, assembly, and dynamics of intermediate filaments. Subcell. Biochem. 31, 319-362
  19. Iredale, J.P. (2001). Hepatic stellate cell behavior during resolution of liver injury. Semin. Liver Dis. 21, 427-436 https://doi.org/10.1055/s-2001-17557
  20. Mignone, F., Gissi, C., Liuni, S., and Pesole, G. (2002). Untranslated regions of mRNAs. Genome Biol. 3, Review S0004
  21. Neubauer, K., Knittel, T., Aurisch, S., Fellmer, P., and Ramadori, G. (1996). Glial fibrillary acidic protein--a cell type specific marker for Ito cells in vivo and in vitro. J. Hepatol. 24, 719-730 https://doi.org/10.1016/S0168-8278(96)80269-8
  22. Nielsen, A.L., and Jorgensen, A.L. (2004). Self-assembly of the cytoskeletal glial fibrillary acidic protein is inhibited by an isoform-specific C terminus. J. Biol. Chem. 279, 41537- 41545 https://doi.org/10.1074/jbc.M406601200
  23. Nielsen, A.L., Holm, I.E., Johansen, M., Bonven, B., Jorgensen, P., and Jorgensen, A.L. (2002). A new splice variant of glial fibrillary acidic protein, GFAP epsilon, interacts with the presenilin proteins. J. Biol. Chem. 277, 29983-29991 https://doi.org/10.1074/jbc.M112121200
  24. Niki, T., De Bleser, P.J., Xu, G., Van Den Berg, K., Wisse, E., and Geerts, A. (1996). Comparison of glial fibrillary acidic protein and desmin staining in normal and CCl4-induced fibrotic rat livers. Hepatology 23, 1538-1545 https://doi.org/10.1002/hep.510230634
  25. Reeves, S.A., Helman, L.J., Allison, A., and Israel, M.A. (1989). Molecular cloning and primary structure of human glial fibrillary acidic protein. Proc. Natl. Acad. Sci. USA 86, 5178−5182
  26. Regoli, M., Orazioli, D., Gerli, R., and Bertelli, E. (2000). Glial fibrillary acidic protein (GFAP)-like immunoreactivity in rat endocrine pancreas. J. Histochem. Cytochem. 48, 259-266 https://doi.org/10.1177/002215540004800211
  27. Riccalton-Banks, L., Bhandari, R., Fry, J., and Shakesheff, K.M. (2003). A simple method for the simultaneous isolation of stellate cells and hepatocytes from rat liver tissue. Mol. Cell. Biochem. 248, 97-102 https://doi.org/10.1023/A:1024184826728
  28. Rockey, D.C., Maher, J.J., Jarnagin, W.R., Gabbiani, G., and Friedman, S.L. (1992). Inhibition of rat hepatic lipocyte activation in culture by interferon-gamma. Hepatology 16, 776-784 https://doi.org/10.1002/hep.1840160325
  29. Roelofs, R.F., Fischer, D.F., Houtman, S.H., Sluijs, J.A., Van Haren, W., Van Leeuwen, F.W., and Hol, E.M. (2005). Adult human subventricular, subgranular, and subpial zones contain astrocytes with a specialized intermediate filament cytoskeleton. Glia 52, 289-300 https://doi.org/10.1002/glia.20243
  30. Ross, J. (1995). mRNA stability in mammalian cells. Microbiol. Rev. 59, 423-450
  31. Sancho-Tello, M., Valles, S., Montoliu, C., Renau-Piqueras, J., and Guerri, C. (1995). Developmental pattern of GFAP and vimentin gene expression in rat brain and in radial glial cultures. Glia 15, 157-166 https://doi.org/10.1002/glia.440150208
  32. Tiggelman, A.M., Boers, W., Linthorst, C., Sala, M., and Chamuleau, R.A. (1995). Collagen synthesis by human liver (myo)fibroblasts in culture: evidence for a regulatory role of IL-1 beta, IL-4, TGF beta and IFN gamma. J. Hepatol. 23, 307-317
  33. Vogel, S., Piantedosi, R., Frank, J., Lalazar, A., Rockey, D.C., Friedman, S.L., and Blaner, W.S. (2000). An immortalized rat liver stellate cell line (HSC-T6): a new cell model for the study of retinoid metabolism in vitro. J. Lipid Res. 41, 882-893
  34. Zelenika, D., Grima, B., Brenner, M., and Pessac, B. (1995). A novel glial fibrillary acidic protein mRNA lacking exon 1. Brain Res. Mol. Brain Res. 30, 251-258 https://doi.org/10.1016/0169-328X(95)00010-P