Recent Research Trends of Process Monitoring Technology: State-of-the Art

공정 모니터링 기술의 최근 연구 동향

  • Yoo, ChangKyoo (College of Environmental and Applied Chemistry Green Energy Center, Kyung Hee University) ;
  • Choi, Sang Wook (Memory Division, Semiconductor Business, Samsung Electronics Co., LTD.) ;
  • Lee, In-Beum (Department of Chemical Engineering, POSTECH)
  • 유창규 (경희대학교 환경응용화학대학 그린에너지센터) ;
  • 최상욱 (삼성전자 반도체사업 메모리부) ;
  • 이인범 (포항공과대학교 화학공학과)
  • Received : 2007.07.05
  • Accepted : 2007.10.10
  • Published : 2008.04.30

Abstract

Process monitoring technology is able to detect the faults and the process changes which occur in a process unpredictably, which makes it possible to find the reasons of the faults and get rid of them, resulting in a stable process operation, high-quality product. Statistical process monitoring method based on data set has a main merit to be a tool which can easily supervise a process with the statistics and can be used in the analysis of process data if a high quality of data is given. Because a real process has the inherent characteristics of nonlinearity, non-Gaussianity, multiple operation modes, sensor faults and process changes, however, the conventional multivariate statistical process monitoring method results in inefficient results, the degradation of the supervision performances, or often unreliable monitoring results. Because the conventional methods are not easy to properly supervise the process due to their disadvantages, several advanced monitoring methods are developed recently. This review introduces the theories and application results of several remarkable monitoring methods, which are a nonlinear monitoring with kernel principle component analysis (KPCA), an adaptive model for process change, a mixture model for multiple operation modes and a sensor fault detection and reconstruction, in order to tackle the weak points of the conventional methods.

공정 모니터링 기술은 공정 내에서 일어나는 예상치 못한 조업변화 및 이상을 조기에 감지하고 조업 이상에 영향을 끼친 근본 원인을 밝혀내어 제거해 줌으로써 공정의 안정적인 조업과 양질의 제품생산의 기반을 제공하여 준다. 데이터에 기반한 통계적 공정 모니터링 방법은 양질의 공정 데이터만 주어진다면 통계적 처리를 접목하여 비교적 쉽게 모니터링을 할 수 있고 공정의 데이터 분석에 이용할 수 있는 도구를 얻을 수 있다는 장점이 있다. 그러나 실제 공정에서는 비선형성, non-Gaussianity, 다중 운전모드, 공정상태변화로 인해 기존의 다변량 통계적 방법을 이용한 공정 모니터링 기법은 비효율적이거나, 공정 감시 성능의 저하, 종종 신뢰할 수 없는 결과를 야기한다. 이러한 경우 기존의 방법으로는 더이상 공정을 정확히 감시할 수 없기 때문에 최근에 많은 새로운 방법들이 개발 되었다. 본 총설에서는 이러한 단점을 보안하기 위해 최근 주목할 만한 연구결과인 공정 비선형성을 고려한 커널주성분분석(kernel principle component analysis) 모니터링 기법, 주성분분석 모델 조합을 이용한 다중모델(mixture model) 모니터링 기법, 공정 변화를 고려한 적응모델(adaptive model) 모니터링 기법, 그리고 센서 이상진단과 보정의 이론과 응용결과에 대하여 소개한다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단, 서울시정개발연구원

References

  1. Montgomery, D. C., Introduction to statistical quality control, 3th Ed., Johan Wiley and Sons, Inc., New York, USA(1996)
  2. Kourti, T. and MacGregor, J. F., "Process Analysis, Monitoring and Diagnosis Using Multivariate Projection Methods," Chemometrics and Intelligent Laboratory Systems, 28(1), 3-21(1995) https://doi.org/10.1016/0169-7439(95)80036-9
  3. Wise, B. M. and Gallagher, N. B., "The Process Chemometrics Approach to Process Monitoring and Fault Detection, " J. Process Control, 6(6), 329-348(1996) https://doi.org/10.1016/0959-1524(96)00009-1
  4. Kourti, T., "Process Analysis, and Abnormal Situation Detection: From Theory to Practice", IEEE Control System Magazine, 10(1), 10-25(2002)
  5. Nomikos, P. and MacGregor, J. F., "Monitoring Batch Processes Using Multiway Principal Component Analysis", AIChE J., 40(8), 1361-1375(1994) https://doi.org/10.1002/aic.690400809
  6. Nomikos, P. and MacGregor, J. F., "Multi-Way Partial Least Square in Monitoring Batch Processes", Chemometrics and Intelligent Laboratory Systems, 30(1), 97-108(1995) https://doi.org/10.1016/0169-7439(95)00043-7
  7. Nomikos, P. and MacGregor, J. F., "Multivariate SPC Charts for Monitoring Batch Processes", Technometrics, 37(1), 41-59(1995) https://doi.org/10.2307/1269152
  8. Chen, Q., Wynne, R. J., Goulding, P. and Sandoz, D., "The Application of Principal Component Analysis and Kernel Density Estimation to Enhance Process Monitoring", Control Engineering Practice, 8(5), 531-543(2000) https://doi.org/10.1016/S0967-0661(99)00191-4
  9. Rosen, C. and Olsson, G., "Disturbance Detection in Wastewater Treatment Plants", Water Science and Technology, 37(12), 197-205(1998)
  10. Gallagher, N. B. and Wise, B. M., "Application of Multi-Way Principal Components Analysis to Nuclear Waste Storage Tank Monitoring, " Computers &Chemical Engineering, 20(S1), S739-S744(1996) https://doi.org/10.1016/0098-1354(96)00131-7
  11. Hwang, D. H., Cho, H. W., Han C. H. and Kim J. H., "On-Line Monitoring Methods Using Multivariate Statistical Method," Chemical Industry and Technology, 15(3), 247-255(1997)
  12. Lee, H. D., Lee, M. H., Cho, H. W., Han, C. H. and Chang, K. S., "Online Quality Monitoring Using Multivariate Statistical Methods in Continuous-Stirred MMA-VA Copolymerization Process", Korean Chem. Eng. Res., 35(5), 605-612(1997)
  13. Hong, S. J. and Han, C. H., "Data-Driven Software Sensor Design for Monitoring, Diagnosis and Control," Chemical Industry and Technology, 17(2), 172-181(1999)
  14. Hong, S. J., Heo, C. K. and Han, C. H., "Local Composition Soft Sensor in a Distillation Column Using PLS," Korean Chem. Eng. Res., 37(3), 445-452(1999)
  15. Lee, Y. H., Han, C. H. and Lee, J. K., "Real-Time Monitoring for a Batch PVC Polymerization Process Based on Multivariate Data Compression Methods," Korean Chem. Eng. Res., 37(2), 319-329 (1999)
  16. Yoon, K. H., Lee, Y. H. and Han, C. H., "Adaptive Block-Wise RPLS Considering Similarity of Blocks," Korean Chem. Eng. Res., 41(5), 592-597(2003)
  17. Yoon, D. M., Lee, Y. H., Han, C. H., Ah, H. S. and Chang, S. H., "Fault Detection and Diagnosis in Film Processing Plants," Korean Chem. Eng. Res., 41(5), 585-591(2003)
  18. Lee, S., Yeom, S. and Lee, K. S., "Methods for Performance Monitoring and Diagnosis of Multivariable Model-Based Control Systems," Korean J. Chemical Engineering, 21(3), 575-581 (2004) https://doi.org/10.1007/BF02705490
  19. Lee, C. J., Song, S. O. and Yoon, I. S., "The Monitoring of Chemical Process Using the Support Vector Machine," Korean Chemical Engineering Research, 42(5), 538-544(2007)
  20. Venkatasubramanian, V., Rengaswamy, R., Yin, K. and Kavuri, S. N. "A Review of Process Fault Detection and Diagnosis: Part I: Quantitative Model-Based Methods," Computers & Chemical Engineering, 27(3), 293-311(2003) https://doi.org/10.1016/S0098-1354(02)00160-6
  21. Venkatasubramanian, V., Rengaswamy, R., Yin, K. and Kavuri, S. N., "A Review of Process Fault Detection and Diagnosis: Part II: Qualitative Models and Search Strategies," Computers & Chemical Engineering, 27(3), 313-326(2003) https://doi.org/10.1016/S0098-1354(02)00161-8
  22. Venkatasubramanian, V., Rengaswamy, R., Yin, K. and Kavuri, S. N., "A Review of Process Fault Detection and Diagnosis: Part III: Process History Based Methods," Computers & Chemical Engineering, 27(3), 327-346(2003) https://doi.org/10.1016/S0098-1354(02)00162-X
  23. Kramer, M. A., "Nonlinear Principal Component Analysis Using Autoassociative Neural Networks," AIChE J., 37(2), 233-243(1991) https://doi.org/10.1002/aic.690370209
  24. Dong, D. and McAvoy, T. J., "Nonlinear Principal Component Analysis-Based on Principal Curves and Neural Networks," Computers & Chemical Engineering, 20(1), 65-78(1996) https://doi.org/10.1016/0098-1354(95)00003-K
  25. Hiden, H. G., Willis, M. J., Tham, M. T. and Montague, G. A., "Non-Linear Principal Components Analysis Using Genetic Programming," Computers & Chemical Engineering, 23(3), 413-425 (1999) https://doi.org/10.1016/S0098-1354(98)00284-1
  26. Scholkopf, B., Smola, A. J. and Muller, K., "Nonlinear Component Analysis as a Kernel Eigenvalue Problem," Neural Computation, 10(5), 1299-1399(1998) https://doi.org/10.1162/089976698300017467
  27. Mika, S., Schölkopf, B., Smola, A. J., Müller, K.-R., Scholz, M. and Rätsch, G., "Kernel PCA and De-Noising in Feature Spaces," in Advances in Neural Information Processing Systems 11(1), 536-542(1999)
  28. Lee, J. M., Yoo, C. K., Choi, S. W., Vanrolleghem, P. and Lee, I. B., "Nonlinear Process Monitoring Using Kernel Principal Component Analysis," Chemical Engineering Science, 59(1), 223-234 (2004) https://doi.org/10.1016/j.ces.2003.09.012
  29. Choi, S. W., Lee, C. K., Lee, J. M., Park, J. H. and Lee, I. B., "Fault Detection and Identification of Nonlinear Processes Based on Kernel PCA," Chemometrics and Intelligent Laboratory Systems, 75(1), 55-67(2005) https://doi.org/10.1016/j.chemolab.2004.05.001
  30. Cho, J. H., Lee, J. M., Choi, S. W., Lee, D. K. and Lee, D. K., "Fault Identification for Process Monitoring Using Kernel Principal Component Analysis," Chemical Engineering Science, 60(1), 279-288(2005) https://doi.org/10.1016/j.ces.2004.08.007
  31. Whiteley, J. R. and Davis, J. F., "Observations and Problems Applying ART2 for Dynamic Sensor Pattern Interpretation," IEEE Trans. Systems, Man, and Cybernetics - Part A: Systems and Humans, 26(4), 423-437(1996) https://doi.org/10.1109/3468.508821
  32. Chen, J. and Liu, J., "Mixture Principal Component Analysis Models for Process Monitoring," Industrial Engineering and Chemistry Research, 38(4), 1478-1488(1999) https://doi.org/10.1021/ie980577d
  33. Eastment, H. T. and Krzanowski, W. J., "Cross-Validatory Choice of the Number of Components from a Principal Component Analysis," Technometrics, 24(2), 73-77(1982) https://doi.org/10.2307/1267581
  34. Tipping, M. E. and Bishop, C. M., "Mixture of Probabilistic Principal Component Analysis," Neural Computation, 11(2), 443-482(1999) https://doi.org/10.1162/089976699300016728
  35. Meinicke, P. and Ritter, H., "Resolution-Based Complexity Control for Gaussian Mixture Models," Technical Report, Faculty of Technology, University of Bielefeld, Germany, http://www.techfak.uni-bielefeld.de/gk/papers(1999)
  36. Xu, L., "Bayesian Ying-Yang Machine, Clustering and Number of Clusters," Pattern Recognition Letters, 18(1), 1167-1178(1997) https://doi.org/10.1016/S0167-8655(97)00121-9
  37. Choi, S. W., Park, J. H. and Lee, I., "Process Monitoring Using a Gaussian Mixture Model Via Principal Component Analysis and Discriminant Analysis," Computers and Chemical Engineering, 28(8), 1377-1387(2004) https://doi.org/10.1016/j.compchemeng.2003.09.031
  38. Choi, S. W., Martin, E. B., Morris, A. J. and Lee, I., "Fault Detection Based on a Maximum-Likelihood Principal Component Analysis (PCA) Mixture," Industrial and Engineering Chemistry Research, 44(7), 2316-2327(2005) https://doi.org/10.1021/ie049081o
  39. van Sprang, E. N. M., Ramaker, H.-J., Westerhuis, J. A., Gurden, S. P. and Smilde, A. K., "Critical Evaluation of Approaches for On-Line Batch Process Monitoring," Chemical Engineering Science, 57(10), 3979-3991(2002) https://doi.org/10.1016/S0009-2509(02)00338-X
  40. Wold, S., "Exponentially Weighted Moving Principal Components Analysis and Projections to Latent Structures," Chemometrics and Intelligent Laboratory Systems, 23(1), 149-161(1994) https://doi.org/10.1016/0169-7439(93)E0075-F
  41. Dayal, B. S. and MacGregor, J. F., "Recursive Exponentially Weighted PLS and Its Applications to Adaptive Control and Prediction," J. Process Control, 7(3), 169-179(1997) https://doi.org/10.1016/S0959-1524(97)80001-7
  42. Qin, S. J., "Recursive PLS Algorithms for Adaptive Data Monitoring," Computers & Chemical Engineering, 22(4-5), 503-514(1998) https://doi.org/10.1016/S0098-1354(97)00262-7
  43. Li, W., Yue, H. H., Cervantes, S. V. and Qin, S. J., "Recursive PCA for Adaptive Process Monitoring," J. Process Control, 10(5), 471-486(2000) https://doi.org/10.1016/S0959-1524(00)00022-6
  44. Choi, S. W., Martin, E. B., Morris, A. J. and Lee, I., "Adaptive Multivariate Statistical Process Control for Monitoring Time-varying Processes," Industrial and Engineering Chemistry Research, 45(9), 3108-3118(2006) https://doi.org/10.1021/ie050391w
  45. Feltz, C. J. and Shiau, J.-J. H., "Statistical Process Monitoring Using an Empirical Bayes Multivariate Process Control Chart," Quality and Reliability Engineering International, 17(3), 119-124 (2001) https://doi.org/10.1002/qre.393
  46. Fortescue, T. R., Kershenbaum, L. S. and Ydstie, B. E., "Implementation of Self-Tuning Regulators with Variable Forgetting Factors," Automatica, 17(6), 831-835(1981) https://doi.org/10.1016/0005-1098(81)90070-4
  47. Lane, S., Martin, E. B., Morris, A. J. and Gower, P., "Application of Exponentially Weighted Principal Component Analysis for the Monitoring of a Polymer Film Manufacturing Process," Trans. the Institute of Measurement and Control, 25(1), 17-35(2003) https://doi.org/10.1191/0142331203tm071oa
  48. Huber, P. J., Robust statistics, John Wiley & Sons: New York (1981)
  49. Dunia, R., Qin, S. J., Edgar, T. F. and McAvoy, T. J., "Identification of Faulty Sensors Using Principal Component Analysis," AIChE J., 42(10), 2797-2812(1996) https://doi.org/10.1002/aic.690421011
  50. Qin, S. J. and Li, W., "Detection and Identification of Faulty Sensors in Dynamic Processes," AIChE J., 47(9), 1581-1593(2001) https://doi.org/10.1002/aic.690470711
  51. Rieger, L., Alex, J., Winkler, S., Boehler, M., Thomann, M. and Siegrist, H., "Progress in Sensor Technology - Progress in Process Control? Part I: Sensor Property Investigation and Classification," Wat. Sci. Tech., 47(2), 103-112(2003)
  52. Rieger, L., Thomann, M., Joss, A., Gujer, W. and Siegrist, H., "Computer Aided Monitoring and Operation of Continuously Measuring Devices," Wat. Sci. Tech., 50(11), 31-39(2004)
  53. Yoo, C. K., Villez, K., Lee, I. B., Van Hulle, S., Vanrolleghem, P. A., "Sensor Validation and Reconciliation for a Partial Nitrification Process," Wat. Sci. Tech., 53(4-5), 513-521(2006) https://doi.org/10.2166/wst.2006.155
  54. Lee, C. and Lee, I.-B., "Missing Value Estimation and Sensor Fault Identification Using Multivariate Statistical Analysis," Korean Chemical Engineering Research, 45(1), 87-92(2007)
  55. Nelson, P. R. C., Taylor, P. A. and MacGregor, J. F., "Missing Data Methods in PCA and PLS; Score Calculations with Incomplete Observations," Chemometrics and Intelligent Laboratory Systems, 35(1), 45-65(1996) https://doi.org/10.1016/S0169-7439(96)00007-X
  56. Wise, B. M. and Ricker, N. L., "Recent Advances in Multivariate Statistical Process Control: Improving Robustness and Sensitivity," Proceedings of the IFAC ADCHEM Symposium, 125-130 (1991)
  57. Lee, C., Choi, S. W. and Lee, I.-B., "Sensor Fault Identification Based on Time-Lagged PCA in Dynamic Processes," Chemometrics and Intelligent Laboratory Systems, 70(2), 165-178(2004) https://doi.org/10.1016/j.chemolab.2003.10.011
  58. Choi, S. W., Lee, C., Lee, J.-M., Park, J. H. and Lee, I.-B., "Fault Detection and Identification of Nonlinear Processes Based on Kernel PCA," Chemometrics and Intelligent Laboratory Systems, 75(1), 55-67(2005) https://doi.org/10.1016/j.chemolab.2004.05.001
  59. Cho, J.-H., Choi, S. W., Lee, D. and Lee, I.-B., "Fault Identification for Process Monitoring Using Kernel Principal Component Analysis," Chemical Engineering Science, 60(1), 279-288(2005) https://doi.org/10.1016/j.ces.2004.08.007
  60. Lee, C., Choi, S. W., Lee, J.-M. and Lee, I.-B., "Sensor Fault Identification in MSPM Using Reconstructed Monitoring Statistics," Industrial and Engineering Chemistry Research, 43(15), 4293-4304(2004) https://doi.org/10.1021/ie034246z
  61. Lee, C., Choi, S. W. and Lee, I.-B., "Variable Reconstruction and Sensor Fault Identification Using Canonical Variate Analysis," J. Process Control, 16(7), 747-761(2006) https://doi.org/10.1016/j.jprocont.2005.12.001
  62. van Dongen, L. G. J. M., Jetten, M. S. M. and van Loosdrecht, M. C. M., The combined SHARON/Anammox process, IWA Publishing, London, UK(2001)