Acknowledgement
Supported by : 한국학술진흥재단, 서울시정개발연구원
References
- Montgomery, D. C., Introduction to statistical quality control, 3th Ed., Johan Wiley and Sons, Inc., New York, USA(1996)
- Kourti, T. and MacGregor, J. F., "Process Analysis, Monitoring and Diagnosis Using Multivariate Projection Methods," Chemometrics and Intelligent Laboratory Systems, 28(1), 3-21(1995) https://doi.org/10.1016/0169-7439(95)80036-9
- Wise, B. M. and Gallagher, N. B., "The Process Chemometrics Approach to Process Monitoring and Fault Detection, " J. Process Control, 6(6), 329-348(1996) https://doi.org/10.1016/0959-1524(96)00009-1
- Kourti, T., "Process Analysis, and Abnormal Situation Detection: From Theory to Practice", IEEE Control System Magazine, 10(1), 10-25(2002)
- Nomikos, P. and MacGregor, J. F., "Monitoring Batch Processes Using Multiway Principal Component Analysis", AIChE J., 40(8), 1361-1375(1994) https://doi.org/10.1002/aic.690400809
- Nomikos, P. and MacGregor, J. F., "Multi-Way Partial Least Square in Monitoring Batch Processes", Chemometrics and Intelligent Laboratory Systems, 30(1), 97-108(1995) https://doi.org/10.1016/0169-7439(95)00043-7
- Nomikos, P. and MacGregor, J. F., "Multivariate SPC Charts for Monitoring Batch Processes", Technometrics, 37(1), 41-59(1995) https://doi.org/10.2307/1269152
- Chen, Q., Wynne, R. J., Goulding, P. and Sandoz, D., "The Application of Principal Component Analysis and Kernel Density Estimation to Enhance Process Monitoring", Control Engineering Practice, 8(5), 531-543(2000) https://doi.org/10.1016/S0967-0661(99)00191-4
- Rosen, C. and Olsson, G., "Disturbance Detection in Wastewater Treatment Plants", Water Science and Technology, 37(12), 197-205(1998)
- Gallagher, N. B. and Wise, B. M., "Application of Multi-Way Principal Components Analysis to Nuclear Waste Storage Tank Monitoring, " Computers &Chemical Engineering, 20(S1), S739-S744(1996) https://doi.org/10.1016/0098-1354(96)00131-7
- Hwang, D. H., Cho, H. W., Han C. H. and Kim J. H., "On-Line Monitoring Methods Using Multivariate Statistical Method," Chemical Industry and Technology, 15(3), 247-255(1997)
- Lee, H. D., Lee, M. H., Cho, H. W., Han, C. H. and Chang, K. S., "Online Quality Monitoring Using Multivariate Statistical Methods in Continuous-Stirred MMA-VA Copolymerization Process", Korean Chem. Eng. Res., 35(5), 605-612(1997)
- Hong, S. J. and Han, C. H., "Data-Driven Software Sensor Design for Monitoring, Diagnosis and Control," Chemical Industry and Technology, 17(2), 172-181(1999)
- Hong, S. J., Heo, C. K. and Han, C. H., "Local Composition Soft Sensor in a Distillation Column Using PLS," Korean Chem. Eng. Res., 37(3), 445-452(1999)
- Lee, Y. H., Han, C. H. and Lee, J. K., "Real-Time Monitoring for a Batch PVC Polymerization Process Based on Multivariate Data Compression Methods," Korean Chem. Eng. Res., 37(2), 319-329 (1999)
- Yoon, K. H., Lee, Y. H. and Han, C. H., "Adaptive Block-Wise RPLS Considering Similarity of Blocks," Korean Chem. Eng. Res., 41(5), 592-597(2003)
- Yoon, D. M., Lee, Y. H., Han, C. H., Ah, H. S. and Chang, S. H., "Fault Detection and Diagnosis in Film Processing Plants," Korean Chem. Eng. Res., 41(5), 585-591(2003)
- Lee, S., Yeom, S. and Lee, K. S., "Methods for Performance Monitoring and Diagnosis of Multivariable Model-Based Control Systems," Korean J. Chemical Engineering, 21(3), 575-581 (2004) https://doi.org/10.1007/BF02705490
- Lee, C. J., Song, S. O. and Yoon, I. S., "The Monitoring of Chemical Process Using the Support Vector Machine," Korean Chemical Engineering Research, 42(5), 538-544(2007)
- Venkatasubramanian, V., Rengaswamy, R., Yin, K. and Kavuri, S. N. "A Review of Process Fault Detection and Diagnosis: Part I: Quantitative Model-Based Methods," Computers & Chemical Engineering, 27(3), 293-311(2003) https://doi.org/10.1016/S0098-1354(02)00160-6
- Venkatasubramanian, V., Rengaswamy, R., Yin, K. and Kavuri, S. N., "A Review of Process Fault Detection and Diagnosis: Part II: Qualitative Models and Search Strategies," Computers & Chemical Engineering, 27(3), 313-326(2003) https://doi.org/10.1016/S0098-1354(02)00161-8
- Venkatasubramanian, V., Rengaswamy, R., Yin, K. and Kavuri, S. N., "A Review of Process Fault Detection and Diagnosis: Part III: Process History Based Methods," Computers & Chemical Engineering, 27(3), 327-346(2003) https://doi.org/10.1016/S0098-1354(02)00162-X
- Kramer, M. A., "Nonlinear Principal Component Analysis Using Autoassociative Neural Networks," AIChE J., 37(2), 233-243(1991) https://doi.org/10.1002/aic.690370209
- Dong, D. and McAvoy, T. J., "Nonlinear Principal Component Analysis-Based on Principal Curves and Neural Networks," Computers & Chemical Engineering, 20(1), 65-78(1996) https://doi.org/10.1016/0098-1354(95)00003-K
- Hiden, H. G., Willis, M. J., Tham, M. T. and Montague, G. A., "Non-Linear Principal Components Analysis Using Genetic Programming," Computers & Chemical Engineering, 23(3), 413-425 (1999) https://doi.org/10.1016/S0098-1354(98)00284-1
- Scholkopf, B., Smola, A. J. and Muller, K., "Nonlinear Component Analysis as a Kernel Eigenvalue Problem," Neural Computation, 10(5), 1299-1399(1998) https://doi.org/10.1162/089976698300017467
- Mika, S., Schölkopf, B., Smola, A. J., Müller, K.-R., Scholz, M. and Rätsch, G., "Kernel PCA and De-Noising in Feature Spaces," in Advances in Neural Information Processing Systems 11(1), 536-542(1999)
- Lee, J. M., Yoo, C. K., Choi, S. W., Vanrolleghem, P. and Lee, I. B., "Nonlinear Process Monitoring Using Kernel Principal Component Analysis," Chemical Engineering Science, 59(1), 223-234 (2004) https://doi.org/10.1016/j.ces.2003.09.012
- Choi, S. W., Lee, C. K., Lee, J. M., Park, J. H. and Lee, I. B., "Fault Detection and Identification of Nonlinear Processes Based on Kernel PCA," Chemometrics and Intelligent Laboratory Systems, 75(1), 55-67(2005) https://doi.org/10.1016/j.chemolab.2004.05.001
- Cho, J. H., Lee, J. M., Choi, S. W., Lee, D. K. and Lee, D. K., "Fault Identification for Process Monitoring Using Kernel Principal Component Analysis," Chemical Engineering Science, 60(1), 279-288(2005) https://doi.org/10.1016/j.ces.2004.08.007
- Whiteley, J. R. and Davis, J. F., "Observations and Problems Applying ART2 for Dynamic Sensor Pattern Interpretation," IEEE Trans. Systems, Man, and Cybernetics - Part A: Systems and Humans, 26(4), 423-437(1996) https://doi.org/10.1109/3468.508821
- Chen, J. and Liu, J., "Mixture Principal Component Analysis Models for Process Monitoring," Industrial Engineering and Chemistry Research, 38(4), 1478-1488(1999) https://doi.org/10.1021/ie980577d
- Eastment, H. T. and Krzanowski, W. J., "Cross-Validatory Choice of the Number of Components from a Principal Component Analysis," Technometrics, 24(2), 73-77(1982) https://doi.org/10.2307/1267581
- Tipping, M. E. and Bishop, C. M., "Mixture of Probabilistic Principal Component Analysis," Neural Computation, 11(2), 443-482(1999) https://doi.org/10.1162/089976699300016728
- Meinicke, P. and Ritter, H., "Resolution-Based Complexity Control for Gaussian Mixture Models," Technical Report, Faculty of Technology, University of Bielefeld, Germany, http://www.techfak.uni-bielefeld.de/gk/papers(1999)
- Xu, L., "Bayesian Ying-Yang Machine, Clustering and Number of Clusters," Pattern Recognition Letters, 18(1), 1167-1178(1997) https://doi.org/10.1016/S0167-8655(97)00121-9
- Choi, S. W., Park, J. H. and Lee, I., "Process Monitoring Using a Gaussian Mixture Model Via Principal Component Analysis and Discriminant Analysis," Computers and Chemical Engineering, 28(8), 1377-1387(2004) https://doi.org/10.1016/j.compchemeng.2003.09.031
- Choi, S. W., Martin, E. B., Morris, A. J. and Lee, I., "Fault Detection Based on a Maximum-Likelihood Principal Component Analysis (PCA) Mixture," Industrial and Engineering Chemistry Research, 44(7), 2316-2327(2005) https://doi.org/10.1021/ie049081o
- van Sprang, E. N. M., Ramaker, H.-J., Westerhuis, J. A., Gurden, S. P. and Smilde, A. K., "Critical Evaluation of Approaches for On-Line Batch Process Monitoring," Chemical Engineering Science, 57(10), 3979-3991(2002) https://doi.org/10.1016/S0009-2509(02)00338-X
- Wold, S., "Exponentially Weighted Moving Principal Components Analysis and Projections to Latent Structures," Chemometrics and Intelligent Laboratory Systems, 23(1), 149-161(1994) https://doi.org/10.1016/0169-7439(93)E0075-F
- Dayal, B. S. and MacGregor, J. F., "Recursive Exponentially Weighted PLS and Its Applications to Adaptive Control and Prediction," J. Process Control, 7(3), 169-179(1997) https://doi.org/10.1016/S0959-1524(97)80001-7
- Qin, S. J., "Recursive PLS Algorithms for Adaptive Data Monitoring," Computers & Chemical Engineering, 22(4-5), 503-514(1998) https://doi.org/10.1016/S0098-1354(97)00262-7
- Li, W., Yue, H. H., Cervantes, S. V. and Qin, S. J., "Recursive PCA for Adaptive Process Monitoring," J. Process Control, 10(5), 471-486(2000) https://doi.org/10.1016/S0959-1524(00)00022-6
- Choi, S. W., Martin, E. B., Morris, A. J. and Lee, I., "Adaptive Multivariate Statistical Process Control for Monitoring Time-varying Processes," Industrial and Engineering Chemistry Research, 45(9), 3108-3118(2006) https://doi.org/10.1021/ie050391w
- Feltz, C. J. and Shiau, J.-J. H., "Statistical Process Monitoring Using an Empirical Bayes Multivariate Process Control Chart," Quality and Reliability Engineering International, 17(3), 119-124 (2001) https://doi.org/10.1002/qre.393
- Fortescue, T. R., Kershenbaum, L. S. and Ydstie, B. E., "Implementation of Self-Tuning Regulators with Variable Forgetting Factors," Automatica, 17(6), 831-835(1981) https://doi.org/10.1016/0005-1098(81)90070-4
- Lane, S., Martin, E. B., Morris, A. J. and Gower, P., "Application of Exponentially Weighted Principal Component Analysis for the Monitoring of a Polymer Film Manufacturing Process," Trans. the Institute of Measurement and Control, 25(1), 17-35(2003) https://doi.org/10.1191/0142331203tm071oa
- Huber, P. J., Robust statistics, John Wiley & Sons: New York (1981)
- Dunia, R., Qin, S. J., Edgar, T. F. and McAvoy, T. J., "Identification of Faulty Sensors Using Principal Component Analysis," AIChE J., 42(10), 2797-2812(1996) https://doi.org/10.1002/aic.690421011
- Qin, S. J. and Li, W., "Detection and Identification of Faulty Sensors in Dynamic Processes," AIChE J., 47(9), 1581-1593(2001) https://doi.org/10.1002/aic.690470711
- Rieger, L., Alex, J., Winkler, S., Boehler, M., Thomann, M. and Siegrist, H., "Progress in Sensor Technology - Progress in Process Control? Part I: Sensor Property Investigation and Classification," Wat. Sci. Tech., 47(2), 103-112(2003)
- Rieger, L., Thomann, M., Joss, A., Gujer, W. and Siegrist, H., "Computer Aided Monitoring and Operation of Continuously Measuring Devices," Wat. Sci. Tech., 50(11), 31-39(2004)
- Yoo, C. K., Villez, K., Lee, I. B., Van Hulle, S., Vanrolleghem, P. A., "Sensor Validation and Reconciliation for a Partial Nitrification Process," Wat. Sci. Tech., 53(4-5), 513-521(2006) https://doi.org/10.2166/wst.2006.155
- Lee, C. and Lee, I.-B., "Missing Value Estimation and Sensor Fault Identification Using Multivariate Statistical Analysis," Korean Chemical Engineering Research, 45(1), 87-92(2007)
- Nelson, P. R. C., Taylor, P. A. and MacGregor, J. F., "Missing Data Methods in PCA and PLS; Score Calculations with Incomplete Observations," Chemometrics and Intelligent Laboratory Systems, 35(1), 45-65(1996) https://doi.org/10.1016/S0169-7439(96)00007-X
- Wise, B. M. and Ricker, N. L., "Recent Advances in Multivariate Statistical Process Control: Improving Robustness and Sensitivity," Proceedings of the IFAC ADCHEM Symposium, 125-130 (1991)
- Lee, C., Choi, S. W. and Lee, I.-B., "Sensor Fault Identification Based on Time-Lagged PCA in Dynamic Processes," Chemometrics and Intelligent Laboratory Systems, 70(2), 165-178(2004) https://doi.org/10.1016/j.chemolab.2003.10.011
- Choi, S. W., Lee, C., Lee, J.-M., Park, J. H. and Lee, I.-B., "Fault Detection and Identification of Nonlinear Processes Based on Kernel PCA," Chemometrics and Intelligent Laboratory Systems, 75(1), 55-67(2005) https://doi.org/10.1016/j.chemolab.2004.05.001
- Cho, J.-H., Choi, S. W., Lee, D. and Lee, I.-B., "Fault Identification for Process Monitoring Using Kernel Principal Component Analysis," Chemical Engineering Science, 60(1), 279-288(2005) https://doi.org/10.1016/j.ces.2004.08.007
- Lee, C., Choi, S. W., Lee, J.-M. and Lee, I.-B., "Sensor Fault Identification in MSPM Using Reconstructed Monitoring Statistics," Industrial and Engineering Chemistry Research, 43(15), 4293-4304(2004) https://doi.org/10.1021/ie034246z
- Lee, C., Choi, S. W. and Lee, I.-B., "Variable Reconstruction and Sensor Fault Identification Using Canonical Variate Analysis," J. Process Control, 16(7), 747-761(2006) https://doi.org/10.1016/j.jprocont.2005.12.001
- van Dongen, L. G. J. M., Jetten, M. S. M. and van Loosdrecht, M. C. M., The combined SHARON/Anammox process, IWA Publishing, London, UK(2001)