고체산화물 연료전지용 Ni/YSZ 음극 촉매에서의 메탄 내부개질 반응 시 탄소 침적 억제를 위한 첨가제 영향

Promoter Effect on Ni/YSZ Anode Catalyst of Solid Oxide Fuel Cell for Suppressing Coke Formation in the Methane Internal Reforming

  • 김혜령 (포항공과대학교 화학공학과) ;
  • 최지은 (포항공과대학교 화학공학과) ;
  • 윤현기 (포항공과대학교 화학공학과) ;
  • 정종식 (포항공과대학교 화학공학과)
  • 투고 : 2008.04.03
  • 심사 : 2008.06.05
  • 발행 : 2008.08.31

초록

고체 산화물 연료전지(SOFC)에서 Ni/YSZ 음극 촉매를 이용한 내부 개질 반응 시 코크 형성에 의한 촉매 비활성화 문제점을 개선하기 위해 음극에 여러가지 조촉매(Ce, Co, Cu, Cr, Mn, Pd, K, $K_2Ti_2O_5$)들을 첨가하여 그 영향을 조사하였다. $H_2O/CH_4=1.5$ 몰비, 800의 반응 조건하에서 수증기 개질 반응을 행한 결과 전이금속산화물들은 코크형성을 억제하는 효과가 없었고 메탄전환율도 오히려 감소하였다. Potassium을 담지한 Ni/YSZ의 경우는 초기에는 뚜렷한 코크형성 억제 효과가 있었으나 반응 후 42시간이 지나면 휘발에 의한 Potassium함량 감소로 급격한 촉매활성의 저하가 일어났다. 격자 구조에 Potassium이 내장된 $K_2Ti_2O_5$를 5% 혼합한 Ni/YSZ의 경우에는 장기간 운전에도 반응 활성이 줄어들지 않아서 음극 촉매의 코크 억제용 첨가제로 적용될 수 있음을 알았다. 반응시간에 따른 촉매의 비활성화는 촉매 표면에서의 graphidic carbon의 생성 때문으로 밝혀졌다.

Various additives were added in small amounts on Ni/YSZ anode of SOFC (solid oxide fuel cell) in order to improve reactivity and to inhibit deactivation due to coke deposition during methane reforming using a low mole ratio steam ($H_2O/CH_4=1.5$) at $800^{\circ}C$. Ni/YSZ catalysts added with various perovskites did not show any improvement but exhibited a gradual decrease in the methane conversion. K-doped Ni/YSZ showed a steady increase and maintenance of the conversion up to 42 hours, after which there was an abrupt deactivation of catalyst owing to potassium loss by volatilization. Addition of 5% of $K_2Ti_2O_5$ on Ni/YSZ showed a stable maintenance of the conversion without K loss, and was able to prevent coke formation during a long time operation. Deactivation of catalyst during the reaction was mainly caused by the accumulation of graphidic carbon on the catalyst surface.

키워드

참고문헌

  1. Lundberg, W. L. and Veyo, S. E., "Proceeding of the 7th International Symposium Solid Oxide Fuel Cells VII," Yokohawa, S. C. Singhal (Eds.), 78 (2001)
  2. Aguiar, P., Chadwick, D. and Kershenbaum, L., Chem. Eng. Sci., 57, 1665-1677(2002) https://doi.org/10.1016/S0009-2509(02)00058-1
  3. Laosiripojana, N. and Assabumrungrat, S., J. Power Sources, 163, 943-951(2007) https://doi.org/10.1016/j.jpowsour.2006.10.006
  4. Jamal, Y. and Wyszynski, M. L., Int. J. Hydrogen Energy, 19, 557-572(1994) https://doi.org/10.1016/0360-3199(94)90213-5
  5. Yentekakis, I. V., Neophytides, S. G., Kaloyiannis, A. C. and Vayenas, C. G., Proceeding of the 3rd International Symposium on Solid Oxide Fuel Cells, vol. 4 Honolulu, HI, USA, 904(1993)
  6. Achenbach, E. and Riensche, E., J. Power sources, 52, 283-288(1994) https://doi.org/10.1016/0378-7753(94)02146-5
  7. Gorte, R., Park, S., Vohs, J. and Want, C., Adv. Mater., 12, 1465-1469(2000) https://doi.org/10.1002/1521-4095(200010)12:19<1465::AID-ADMA1465>3.0.CO;2-9
  8. Moon, K. I., "Carbon Dioxide Reforming of Methane over Nickel-based Catalyst," M.S. Dissertation, Pohang University of Science & Technology, Korea(1996)
  9. Son, J. H., "Study of Potassium Dititanate Catalysts for Treating Soot and NOx from Diesel Engine Exhausts", M.S. Dissertation, Pohang University of Science & Technology, Korea(2005)
  10. Frusteri, F., Freni, S., Chiodo, V., Spadaro, L., Bonura, G. and Cavallaro, S., J. Power Sources, 132, 139-144(2004) https://doi.org/10.1016/j.jpowsour.2003.12.032
  11. Clarke, S. H., Dicks, A. L., Pointon, K., Smith, T. A. and Swann, A., Catalysis Today, 38, 411-423(1997) https://doi.org/10.1016/S0920-5861(97)00052-7