DOI QR코드

DOI QR Code

Glutathione S-transferase polymorphism of neonatal hyperbilirubinemia in Korean neonates

한국인 신생아 황달과 Glutathione S-transferase 다형성에 관한 연구

  • 강창석 (성애병원 소아청소년과) ;
  • 홍승수 (성애병원 소아청소년과) ;
  • 김지숙 (성애병원 소아청소년과) ;
  • 김은령 (성애병원 소아청소년과)
  • Received : 2007.09.12
  • Accepted : 2008.02.02
  • Published : 2008.03.15

Abstract

Purpose : Glutathione S-transferase (GST) is a polymorphic supergene family of detoxification enzymes that are involved in the metabolism of numerous diseases. Several allelic variants of GSTs show impaired enzyme activity and are suspected to increase the susceptibility to diseases. Bilirubin is bound efficiently by GST members. The most commonly expressed gene in the liver is GSTM1, and GSTT1 is expressed predominantly in the liver and kidneys. To ascertain the relationship between GST and neonatal hyperbilirubinemia, the distribution of the polymorphisms of GSTT1 and GSTM1 were investigated in this study. Methods : Genomic DNA was isolated from 88 patients and 186 healthy controls. The genotypes were analyzed by polymerase chain reaction (PCR). Results : The overall frequency of the GSTM1 null was lower in patients compared to controls (P=0.0187, Odds ratio (OR) =0.52, 95% confidence interval (CI), 0.31-0.88). Also, the GSTT1 null was lower in patients compared to controls (P=0.0014, OR=0.41, 95% CI=0.24-0.70). Moreover, the frequency of the null type of both, in the combination of GSTM1 and GSTT1, was significantly reduced in jaundiced patients (P=0.0008, OR=0.31, 95% CI=0.17-0.61). Conclusion : We hypothesized that GSTM1 and GSTT1 might be associated with neonatal hyperbilirubinemia. However, the GSTT1 and GSTM1 null type was reduced in patients. Therefore the null GSTT1, null GSTM1, and null type of both in the combination of GSTM1 and GSTT1 may be not a risk factor of neonatal jaundice.

목 적 : GSTs는 glutathione과 친전자성 화합물의 결합을 촉매하여 생체내에 독성 물질로부터 조직을 보호하는 효소로, 여러 다형성이 확인 되었으며 일부 GSTs의 null 유전자형을 가진 사람은 GSTs 단백을 생성하지 못하여 다양한 질병의 감수성에 영향을 미친다고 보고 되었다. 이것은 빌리루빈과 같은 non-substrate ligand와 결합하여 세포내로 운반하는 역할을 하는 대표적인 ligandin이며 빌리루빈을 간세포 내 소포체로 이동시켜 UGT를 통해 glucuronidation 시키는 역할을 한다. 이 연구에서는 빌리루빈 대사의 ligandin인 GSTs 중 GSTM1, GSTT1과 신생아 황달과 연관성이 있는 지 알아보고자 본 연구를 시행하였다. 방 법 : 혈청 빌리루빈 수치가 12 mg/dL 이상인 건강하고 위험인자가 없는 만삭아 중 신생아 고빌리루빈혈증 환아 88명, 대조군은 186명을 대상으로 혈액 0.5 cc를 채혈하여 DNA를 분류하였고 중합효소 연쇄 반응을 수행하여 DNA band를 확인하였다. 결 과 : 대조군의 GSTM1 null 유전형 58.1%, GSTT1의 null 유전형 53.2%였다. 환자군에서 GSTM1 null 유전형은 42% (P=0.0187), GSTT1 null 유전형은 31.8% (P=0.0014)로 통계학적 연관성이 있었다. GSTM1/GSTT1 null/null인 경우, 환자군에서 20명(22.7%)(P=0.0008), GSTM1/GSTT1 null/present인 경우 환자군에서 17명(19.3%) (P=0.0470), GSTM1/GSTT1 present/null인 경우 환자군에서 8명(9.1%) (P=0.0066)으로 나타났다 결 론 : GSTM1과 GSTT1 모두 환자군에서 null 유전형이 대조군에 비하여 더 적게 나타나 GSTs null 유전형이 신생아 고빌리루빈혈증의 위험인자는 아니었다.

Keywords

References

  1. Horiguchi T, Bauer C. Ethnic differences in neonatal jaundice: Comparison of Japanese and Caucasian newborn infants. Am J Obstet Gynecol 1975;121:71-4 https://doi.org/10.1016/0002-9378(75)90978-3
  2. Linn S, Schoenbaum SC, Monson RR, Rosner B, Stubblefield PG, Ryan KJ Epidemiology of neonatal hyperbilirubinemia. Pediatrics 1985;75:770-4
  3. Nielsen HE, Haase P, Blaabjerg ], Stryhn H, Hilden J Risk factors and sib correlation in physiological neonatal jaundice. Acta Paediatr Scand 1987;76:504-11 https://doi.org/10.1111/j.1651-2227.1987.tb10507.x
  4. Khoury MJ, Calle EE, Joesoef RM. Recurrence risk of neonatal hyperbilirubinemia in siblings. Am J Dis Child 1988;142:1065-9
  5. Whalen R, Boyer TD. Human Glutathione S-transferases. Semin Liver Dis 1998;18:345-58 https://doi.org/10.1055/s-2007-1007169
  6. Abdel-Rahman SZ, el-Zein RA, Anwar AW, Au WW. A multiplex PCR procedure for polymorphism analysis of GSTM1 and GSTT1 genes in population studies. Cancer Lett 1996;107:229-33 https://doi.org/10.1016/0304-3835(96)04832-X
  7. Hayes JD, Pulford DJ. The glutathione S-transferase super-gene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 1995;30:445-600 https://doi.org/10.3109/10409239509083491
  8. Wang X, Roy Chowdhury J, Roy Chowdhury N. Bilirubin metabolism: Applied physiology. Current Paediatrics 2006;16: 70-4 https://doi.org/10.1016/j.cupe.2005.10.002
  9. Hayes JD, Strange RC. Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology 2000;61:154-66 https://doi.org/10.1159/000028396
  10. Seidegard J, Vorachek WR, Pero RW, Pearson WR. Hereditary differences in the expression of the human glutathione transferase active on trans-stilbene oxide are due to a gene deletion. Proc Natl Acad Sci USA 1988;85:7293-7 https://doi.org/10.1073/pnas.85.19.7293
  11. Pemble S, Schroeder KR, Spencer SR, Meyer DJ, Hallier E, Bolt HM, et al. Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J 1994;300:271-6 https://doi.org/10.1042/bj3000271
  12. Nazar-Stewart V, Motulsky AG, Eaton DL, White E, Hornung SK, Leng ZT, et al. The glutathione S-transferase mu polymorphism as a marker for susceptibility to lung carcinoma. Cancer Res 1993;53:2313-8
  13. Yang P, Yokomizo A, Tazelaar HD, Marks RS, Lesnick TG, Miller DL, et al. Genetic determinants of lung cancer shortterm survival: the role of glutathione-related gene. Lung Cancer 2002;35:221-9 https://doi.org/10.1016/S0169-5002(01)00426-3
  14. Sgambato A, Campisi B, Zupa A, Bochicchio A, Romano G, Tartarone A, et al. Glutathione S-transferase (GST) polymorphisms as risk factors for cancer in a highly homogeneous population from southern Italy. Anticancer Res 2002; 22:3647-52
  15. Bell DA, Taylor JA, Paulson DF, Robertson CN, Mohler JL, Lucier GW. Genetic risk and carcinogen exposure: a common inherited defect of the carcinogen-metabolism gene glutathione S-transferase M1 (GSTM1) that increase susceptibility to bladder cancer. J Natl Cancer Inst 1993;85:1159-64 https://doi.org/10.1093/jnci/85.14.1159
  16. Ramsay HM, Harden PN, Reece S, Smith AG, Jones PW, Strange RC, et al. Polymorphisms in glutathione S-transferases are associated with altered risk of nonmelanoma skin cancer in renal transplant recipients: a preliminary analysis. J Invest Dermatol 2001;117:251-5 https://doi.org/10.1046/j.0022-202x.2001.01357.x
  17. Morinobu A, Kanagawa S, Koshiba M, Sugai S, Kumagai S. Association of the glutathione S-transferase Ml homozygous null genotype with susceptibility to Sjogren's syndrome in Japanese individuals. Arthritis Rheum 1999;42:2612-5 https://doi.org/10.1002/1529-0131(199912)42:12<2612::AID-ANR15>3.0.CO;2-V
  18. Kang TY, El-Sohemy A, Comelis MC, Jung CI, Lee HS, Uhm WS, et al. Glutathione S-transferase gene polymor-phisms and systemic lupus erythematosus. J Korean Rheum Assoc 2003;10:234-42
  19. Wieneke JK, Pemble S, Ketterer B, Kelsey KT. Gene deletion of glutathione S-transferase $\theta$: correlation with induced genetic damage and potential role in endogenous mutagenesis. Cancer Epidemiol Biomarkers Prev 1995;4:253-9
  20. Park SK, Kang DH, Yoo KY, Lee SJ, Kim YC, Kang HS et al. A case-control study of the association between glutathione S-trasferase (GST) Ml and Tl genetic polymorphism and breast cancer in Korean women. J Korea Cancer Assoc 1999;31:635-62
  21. Luo JC, Cheng TJ, Kuo HW, Chang MJ. Abnormal liver function associated with occupational exposure to dimethyl-formamide and glutathione S-transferase polymorphisms. Biomarkers 2005;10:467-74
  22. Mohammadzadeh Ghobadloo S, Yaghmaei B, Allameh A, Hassani P, Noorinayer B, Zali MR. Polymorphisms of glutathione S-transferase Ml, Tl, and PI in patients with HBV -related liver cirrhosis, chronic hepatitis, and normal carriers. Clin Biochem 2006;39:46-9 https://doi.org/10.1016/j.clinbiochem.2005.10.004
  23. Engracia V, Leite MM, Pagotto RC, Zucoloto S, Barbosa CA, Mestriner MA. Expression of class $\mu$ glutathione S-transferase in human liver and its association with hepato-pathies. Am J Med Genet A 2003;123:257-60
  24. Davies MH, Elias E, Acharya S, Cotton W, Faulder GC, Fryer AA, et al. GSTMI null polymorphism at the glutathione S-transferase Ml locus: Phenotype and genotype studies in patients with primary biliary cirrhosis. Gut 1993;34:549-53 https://doi.org/10.1136/gut.34.4.549
  25. Groppi A, Coutelle C, Fleury B, Iron A, Begueret J, Couzigou P. Glutathione S-transferase class $\mu$ in French cirrhotic patients. Hum Genet 1991;87:628-630
  26. Harada S, Abei M, Tanaka N, Agarwal DP, Goedde HW. Liver glutathione S-transferase polymorphism in Japanese and its pharmacogenetic importance. Hum Genet 1987;75: 322-5 https://doi.org/10.1007/BF00284101
  27. Harrison DJ, May L, Hayes PC, Haque MM, Hayes JD. Glutathione S-transferases in alcoholic liver disease. Gut 1990;31:909-12 https://doi.org/10.1136/gut.31.8.909
  28. Cho HJ, Lee SY, Ki CS, Kim JW. GSTMl, GSTTl and GSTPI polymorphisms in the Korean population. J Korean Med Sci 2005;20:1089-92 https://doi.org/10.3346/jkms.2005.20.6.1089
  29. Hong SH, Kim JW, Kim HG, Park IK, Ryoo JW, Lee CH, et al. Glutathione S-transferase (GSTM1, GSTT1 and GSTP1) and N-acetyltransferase 2 polymorphisms and risk of gastric cancer. J Prev Med Public Health 2006;39:135-40