Functional Conservation and Divergence of FVE Genes that Control Flowering Time and Cold Response in Rice and Arabidopsis

  • Baek, Il-Sun (Plant Signaling Network Research Center, School of Life Sciences and Biotechnology, Korea University) ;
  • Park, Hyo-Young (Plant Signaling Network Research Center, School of Life Sciences and Biotechnology, Korea University) ;
  • You, Min Kyoung (Plant Signaling Network Research Center, School of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Jeong Hwan (Plant Signaling Network Research Center, School of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Jeong-Kook (Plant Signaling Network Research Center, School of Life Sciences and Biotechnology, Korea University)
  • 투고 : 2008.04.07
  • 심사 : 2008.07.08
  • 발행 : 2008.10.31

초록

Recent molecular and genetic studies in rice, a short-day plant, have elucidated both conservation and divergence of photoperiod pathway genes and their regulators. However, the biological roles of rice genes that act within the autonomous pathway are still largely unknown. In order to better understand the function of the autonomous pathway genes in rice, we conducted molecular genetic analyses of OsFVE, a rice gene homologous to Arabidopsis FVE. OsFVE was found to be ubiquitously expressed in vegetative and reproductive organs. Overexpression of OsFVE could rescue the flowering time phenotype of the Arabidopsis fve mutants by up-regulating expression of the SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1) and down-regulating FLOWERING LOCUS C (FLC) expression. These results suggest that there may be a conserved function between OsFVE and FVE in the control of flowering time. However, OsFVE overexpression in the fve mutants did not rescue the flowering time phenotype in in relation to the response to intermittent cold treatment.

키워드

과제정보

연구 과제 주관 기관 : Korea Research Foundation

참고문헌

  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403- 410 https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Aukerman, M.J., Lee, I., Weigel, D., and Amasino, R.M. (1999). The Arabidopsis flowering-time gene LUMINIDEPENDENS is expressed primarily in regions of cell proliferation and encodes a nuclear protein that regulates LEAFY expression. Plant J. 18, 195-203 https://doi.org/10.1046/j.1365-313X.1999.00442.x
  3. Ausin, I., Alonso-Blanco, C., Jarillo, J.A., Ruiz-Garcia, L., and Martinez- Zapater, J.M. (2004). Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nat. Genet. 36, 162-166 https://doi.org/10.1038/ng1295
  4. Baurle, I., Smith, L., Baulcombe, D.C., and Dean, C. (2007). Widespread role for the flowering-time regulators FCA and FPA in RNA-mediated chromatin silencing. Science 318, 109-112 https://doi.org/10.1126/science.1146565
  5. Blazquez, M.A., Ahn, J.H., and Weigel, D. (2003). A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat. Genet. 33, 168-171 https://doi.org/10.1038/ng1085
  6. Boss, P.K., Bastow, R.M., Mylne, J.S., and Dean, C. (2004). Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16, S18-31 https://doi.org/10.1105/tpc.015958
  7. Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Morris, B., Coupland, G., and Putterill, J. (1999). GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J. 18, 4679-4688 https://doi.org/10.1093/emboj/18.17.4679
  8. Gendall, A.R., Levy, Y.Y., Wilson, A., and Dean, C. (2001). The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Aravidopsis. Cell 107, 525-535 https://doi.org/10.1016/S0092-8674(01)00573-6
  9. Goff, S.A., Ricke, D., Lan, T.H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H., et al. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92-100 https://doi.org/10.1126/science.1068275
  10. Hartmann, U., Hohmann, S., Nettesheim, K., Wisman, E., Saedler, H., and Huijser, P. (2000). Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J. 21, 351- 360 https://doi.org/10.1046/j.1365-313x.2000.00682.x
  11. He, Y., Michaels, S.D., and Amasino, R.M. (2003). Regulation of flowering time by histone acetylation in Arabidopsis. Science 302, 1751-1754 https://doi.org/10.1126/science.1091109
  12. Helliwell, C.A., Wood, C.C., Robertson, M., James Peacock, W., and Dennis, E.S. (2006). The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J. 46, 183-192 https://doi.org/10.1111/j.1365-313X.2006.02686.x
  13. Izawa, T., Takahashi, Y., and Yano, M. (2003). Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr. Opin. Plant Biol. 6, 113-120 https://doi.org/10.1016/S1369-5266(03)00014-1
  14. Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M.J., and Weigel, D. (1999). Activation tagging of the floral inducer FT. 286, 1962-1965 https://doi.org/10.1126/science.286.5446.1962
  15. Kim, H.J., Hyun, Y., Park, J.Y., Park, M.J., Park, M.K., Kim, M.D., Lee, M.H., Moon, J., Lee, I., and Kim, J. (2004). A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nat. Genet. 36, 167-171 https://doi.org/10.1038/ng1298
  16. Kim, S., Choi, K., Park, C., Hwang, H.J., and Lee, I. (2006). SUPPRESSOR OF FRIGIDA4, encoding a C2H2-Type zinc finger protein, represses flowering by transcriptional activation of Arabidopsis FLOWERING LOCUS C. Plant Cell 18, 2985-2998 https://doi.org/10.1105/tpc.106.045179
  17. Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M., and Araki, T. (1999). A pair of related genes with antagonistic roles in mediating flowering signals. Science 286, 1960-1962 https://doi.org/10.1126/science.286.5446.1960
  18. Kojima, S., Takahashi, Y., Kobayashi, Y., Monna, L., Sasaki, T., Araki, T., and Yano, M. (2002). Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol. 43, 1096-1105 https://doi.org/10.1093/pcp/pcf156
  19. Koornneef, M., Alonso-Blanco, C., Blankestijn-de Vries, H., Hanhart, C.J., and Peeters, A.J. (1998). Genetic interactions among lateflowering mutants of Arabidopsis. Genetics 148, 885-892
  20. Lee, I., Aukerman, M.J., Gore, S.L., Lohman, K.N., Michaels, S.D., Weaver, L.M., John, M.C., Feldmann, K.A., and Amasino, R.M. (1994). Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. Plant Cell 6, 75-83 https://doi.org/10.1105/tpc.6.1.75
  21. Lee, H., Suh, S.S., Park, E., Cho, E., Ahn, J.H., Kim, S.G., Lee, J.S., Kwon, Y.M., and Lee, I. (2000). The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev 14, 2366-2376 https://doi.org/10.1101/gad.813600
  22. Lee, J.H., Yoon, H.-S., Yun, C.-H., Sim, W.-S., and Kim, J.-K. (2002). Molecular characterization of the mitochondrial elongation factor EF-Tu gene in rice (Oryza sativa L.). Plant Cell Rep. 21, 157-165 https://doi.org/10.1007/s00299-002-0469-5
  23. Lee, S., Kim, J., Han, J.J., Han, M.J., and An, G. (2004). Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUSLIKE 20 (SOC1/AGL20) ortholog in rice. Plant J. 38, 754-764 https://doi.org/10.1111/j.1365-313X.2004.02082.x
  24. Lee, J.H., Cho, Y.S., Yoon, H.S., Suh, M.C., Moon, J., Lee, I., Weigel, D., Yun, C.H., and Kim, J.K. (2005). Conservation and divergence of FCA function between Arabidopsis and rice. Plant Mol. Biol. 58, 823-838 https://doi.org/10.1007/s11103-005-8105-8
  25. Lee, J.H., Hong, S.M., Yoo, S.J., Park, O.K., Lee, J.S., and Ahn, J.H. (2006). Integration of floral inductive signals by flowering locus T and suppressor of overexpression of Constans 1. Physiologia Plantarum 126, 475-483
  26. Lee, J.H., Yoo, S.J., Park, S.H., Hwang, I., Lee, J.S., and Ahn, J.H. (2007). Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev. 21, 397-402 https://doi.org/10.1101/gad.1518407
  27. Levy, Y.Y., Mesnage, S., Mylne, J.S., Gendall, A.R., and Dean, C. (2002). Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297, 243-246 https://doi.org/10.1126/science.1072147
  28. Lim, M.H., Kim, J., Kim, Y.S., Chung, K.S., Seo, Y.H., Lee, I., Hong, C.B., Kim, H.J., and Park, C.M. (2004). A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. Plant Cell 16, 731-740 https://doi.org/10.1105/tpc.019331
  29. Macknight, R., Bancroft, I., Page, T., Lister, C., Schmidt, R., Love, K., Westphal, L., Murphy, G., Sherson, S., Cobbett, C., et al. (1997). FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89, 737-745 https://doi.org/10.1016/S0092-8674(00)80256-1
  30. Michaels, S.D., and Amasino, R.M. (1999). FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11, 949-956 https://doi.org/10.1105/tpc.11.5.949
  31. Park, D.H., Somers, D.E., Kim, Y.S., Choy, Y.H., Lim, H.K., Soh, M.S., Kim, H.J., Kay, S.A., and Nam, H.G. (1999). Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285, 1579-1582 https://doi.org/10.1126/science.285.5433.1579
  32. Park, S.J., Piao, H.L., Xuan, Y.H., Park, S.H., Je, B.I., Kim, C.M., Lee, E.J., Park, S.H., Ryu, B., Lee, K.H., et al. (2006). Analysis of intragenic Ds transpositions and excision events generating novel allelic variation in rice. Mol. Cells 21, 284-293
  33. Putterill, J., Robson, F., Lee, K., Simon, R., and Coupland, G. (1995). The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80, 847-857 https://doi.org/10.1016/0092-8674(95)90288-0
  34. Putterill, J., Laurie, R., and Macknight, R. (2004). It's time to flower: the genetic control of flowering time. Bioessays 26, 363-373 https://doi.org/10.1002/bies.20021
  35. Quesada, V., Macknight, R., Dean, C., and Simpson, G.G. (2003). Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. EMBO J. 22, 3142-3152 https://doi.org/10.1093/emboj/cdg305
  36. Samach, A., Onouchi, H., Gold, S.E., Ditta, G.S., Schwarz-Sommer, Z., Yanofsky, M.F., and Coupland, G. (2000). Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288, 1613-1616 https://doi.org/10.1126/science.288.5471.1613
  37. Schomburg, F.M., Patton, D.A., Meinke, D.W., and Amasino, R.M. (2001). FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. Plant Cell 13, 1427-1436 https://doi.org/10.1105/tpc.13.6.1427
  38. Searle, I., He, Y., Turck, F., Vincent, C., Fornara, F., Krober, S., Amasino, R.A., and Coupland, G. (2006). The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev. 20, 898-912 https://doi.org/10.1101/gad.373506
  39. Sheldon, C.C., Burn, J.E., Perez, P.P., Metzger, J., Edwards, J.A., Peacock, W.J., and Dennis, E.S. (1999). The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11, 445-458 https://doi.org/10.1105/tpc.11.3.445
  40. Simpson, G.G. (2004). The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Curr. Opin. Plant. Biol. 7, 570-574 https://doi.org/10.1016/j.pbi.2004.07.002
  41. Simpson, G.G., and Dean, C. (2002). Arabidopsis, the Rosetta stone of flowering time? Science 296, 285-289 https://doi.org/10.1126/science.296.5566.285
  42. Simpson, G.G., Dijkwel, P.P., Quesada, V., Henderson, I., and Dean, C. (2003). FY is an RNA 3' end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113, 777-787 https://doi.org/10.1016/S0092-8674(03)00425-2
  43. Weigel, D., and Glazebrook, J. (2002). Arabidopsis: A laboratory manual (Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press)
  44. You, M.K., Oh, S.I., Ok, S.H., Cho, S.K., Shin, H.Y., Jeung, J.U., and Shin, J.S. (2007) Identification of putative MAPK kinases in Oryza minuta and O. sativa responsive to biotic stresses. Mol. Cells 23, 108-114
  45. Yu, J., Hu, S., Wang, J., Wong, G.K., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X., et al. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79-92 https://doi.org/10.1126/science.1068037