Phylogenetic relationships of Coryloideae based on waxy and atpB-rbcL sequences

Waxy와 atpB-rbcL 염기서열 분석에 의한 Coryloideae의 계통 유연관계

  • Yoo, Ki-Oug (Division of Life Sciences, Kangwon National University) ;
  • Wen, Jun (Department of Botany, National Museum of Natural History)
  • Published : 2008.12.31

Abstract

Phylogenetic studies were conducted for 35 populations of the subfamily Coryloideae (Betulaceae) based on waxy gene of nuclear DNA and atpB-rbcL intergenic spacer region of chloroplast DNA. Waxy data analysis suggest that Coryloideae is monophyletic; Corylus is monophyletic and basally branching within the subfamily Coryloideae; Ostryopsis is sister to the Carpinus and Ostrya clade, and the Ostrya is monophyletic (BS=86, PP=99). AtpB-rbcL intergenic spacer region analysis shows that Ostryopsis appeared as the most basal clade within the Coryloideae; Corylus is monophyletic(BS=98, PP=100) and placed between Carpinus-Ostrya and Ostryopsis clade; Carpinus and Ostrya formed a clade with a high support value(BS=100, PP=100). Carpinus sect. Carpinus is monophyletic, whereas sect. Distegocarpus is paraphyletic in the waxy tree. Corylus formed two subclades, but discordance at the infrageneric classification based on morphological characters. In the atpB-rbcL tree, Carpinus and Corylus taxa form a polytomy within the each clade. Results from the two data sets differ mainly in the relative position of Ostryopsis, the monophyly of Ostrya, and the relationships within the Carpinus-Ostrya clade. Further studies are needed for clarify the taxonomic position and the generic limitation.

Coryloideae 35집단에 대한 계통 유연관계를 알아보기 위하여 핵 DNA의 waxy 유전자와 엽록체 DNA의 atpB-rbcL intergenic spacer 지역에 대한 염기서열을 분석하였다. Waxy 유전자 분석에서 Coryloideae의 4개 속은 단계통군을 형성하였으며, 개암나무속은 단계통군을 형성하면서 군내군의 가장 기부에 분계조(clade)를 형성하였다. Ostryopsis속은 서어나무속과 새우나무속을 위한 자매군을 형성하였으며, 새우나무속 역시 단계통군을 형성하였다(BS=86, PP=99). AtpB-rbcL 분석에서는 Ostryopsis속이 아과 내에서 가장 기부에 분계조를 형성하였다. 개암나무속은 서어나무속-새우나무속과 Ostryopsis속의 중간에 위치하였고(BS=98, PP=100), 서어나무속은 새우나무속 분류군들과 함께 높은 지지도(BS=100, PP=100)를 가지고 하나의 clade를 형성하였다. Waxy 유전자 분석에서 서어나무속의 Carpinus절은 단계통을 형성하였지만 Distegocarpus절은 병계원군(paraphyletic group)으로 나타났다. 개암나무속의 경우는 2개의 subclade를 형성하였지만 속내 절 또는 아절 등의 분류계급과는 일치하지 않았다. AtpB-rbcL 분석에서는 대부분의 분류군들이 각각의 clade내에서 polytomy를 형성하여 차이를 보였다. 이상의 결과에서 두 유전자의 계통분석 결과가 뚜렷하게 불일치하였고, 특히 Ostryopsis속의 위치와 새우나무속의 단계통 여부, 그리고 서어나무속과 새우나무속의 유연관계가 가장 큰 차이를 보였다. 따라서 이들에 대한 추가적인 연구가 필요한 것으로 판단된다.

Keywords

Acknowledgement

Supported by : 강원대학교

References

  1. Abbe. E.C. 1935. Studies in the phylogeny of the Betulaceae. I. Floral and inflorescence anatomy and morphology. Bot. Gaz. 97: 1-67. https://doi.org/10.1086/334537
  2. Abbe. E.C. 1974. Flowers and inflorescences of the Amentiferae. Bot. Rev. 40: 159-261. https://doi.org/10.1007/BF02859135
  3. Bobrov, E.G. 1936. Histoire et systematique du genre Corylus. Sovietskaia Botanica 1936: 11-51.(in Russian).
  4. Bousquet, J., S.H. Strauss, and P. Li. 1992. Complete congruence between morphological and rbcL-based molecular phylogenies in Birches and related species (Betulaceae). Molec. Biol. Evol. 9: 1076-1088.
  5. Brunner, F. and D.E. Fairbrothers. 1979. Serological investigations of the Corylaceae. Bull. Torrey Bot. Club 106: 97-103. https://doi.org/10.2307/2484283
  6. Chang, C.-S. and J.I. Jeon. 2004. Foliar flavonoids of the most primitive group, sect. Distegocarpus within the genus Carpinus. Biochem. Syst. and Evol. 32: 35-44. https://doi.org/10.1016/S0305-1978(03)00186-8
  7. Chen, Z.-D., S.R. Manchester and H.Y. Sun. 1999. Phylogeny and evolution of the Betulaceae as inferred from DNA sequences, morphology, and paleobotany. Amer. J. Bot. 86: 1168-1181. https://doi.org/10.2307/2656981
  8. Chen, Z.-D., S.R. Manchester and Z.-Y. Zhang. 1991. A study on foliar epidermis in Betulaceae. Acta Phytotax. Sin. 29: 156-163.
  9. Clark, J, R., M. Robertson, and C. C. Ainsworth. 1991. Nucleotide sequence of a wheat (Triticum aestivum L.) cDNA clone encoding the waxy protein. Pl. Molec. Biol. 16: 1099-1101. https://doi.org/10.1007/BF00016086
  10. Crane, P.R. 1989. Early fossil history and evolution of the Betulaceae. Pp. 87-116. In: Crane P.R., Blackmore S. (eds.), Evolution, systematics and fossil history of the Hamamelidae, vol. 2. Systematics Association Special Volume 40B, Clarendon Press, Oxford.
  11. Cronquist, A. 1981. An integrated system of classification of flowering plants. Columbia University Press, London.
  12. Dahlgren, R. 1983. General aspects of angiosperm evolution and macrosystematics. Nordic J. Bot. 3: 119-149. https://doi.org/10.1111/j.1756-1051.1983.tb01448.x
  13. De Candolle, A. 1864. Corylus. Pp. 128-133. In: Prodromus systematis naturalis regni vegetabilis, vol. 16, part 2, Paris: Treuttel and Wurtz.
  14. Doyle, J.J. and J.L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15.
  15. Dry, I., A. Smith, A. Edwards, M. Bhattacharyya, P. Dunn, and C. Martin. 1992. Characterization of cDNAs encoding two isoforms of granule-bound starch synthase which show differential expression in developing storage organs of pea and potato. Plant Journal 2: 193-202.
  16. Erdogan, V. and S.A. Mehlenbacher. 2000. Phylogenetic relationships of Corylus species (Betulaceae) based on nuclear ribosomal DNA ITS region and chloroplast matK gene sequences. Syst. Bot. 25: 727-737. https://doi.org/10.2307/2666730
  17. Evans, R.C., L.A. Alice, C.S. Cambell, E.A. Kelloggs and T.A. Dickinson. 2000. The granule-bound starch synthase (GBSSI) gene in the Rosaceae: multiple loci and phylogenetic utility. Molec. Phylogenet. Evol. 17: 388-400. https://doi.org/10.1006/mpev.2000.0828
  18. Farris, J.S., M. Kallersjo, A.G. Kluge and C. Bult. 1994. Testing significance of incongruence. Cladistics 10: 315-319. https://doi.org/10.1111/j.1096-0031.1994.tb00181.x
  19. M. Kallersjo, A.G. Kluge and C. Bult. 1995. Constructing a significance test for incongruence. Syst. Biol. 44: 570-572. https://doi.org/10.1093/sysbio/44.4.570
  20. Felsenstain, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 789-791.
  21. Forest, F. and A. Bruneau. 2000. Phylogenetic analysis, organization, and molecular evolution of the nontranscribed spacer of 5S ribosomal RNA genes in Corylus (Betulaceae). Int. J. Plant Sci. 161: 793-806. https://doi.org/10.1086/314294
  22. V, Savolainen, M.W. Chase, R. Lupia, A. Bruneau, and P.R. Crane. 2005. Teasing apart molecular-versus fossil-based error estimates when dating phylogenetic trees: A case study in the Birch family (Betulaceae). Syst. Bot. 30: 118-133. https://doi.org/10.1600/0363644053661850
  23. Furlow, J.J. 1990. The genera of Betulaceae in the southeastern United States. J. Arnold Arbor. 71: 1-67. https://doi.org/10.5962/bhl.part.24925
  24. Gibson, T., D. Higgins and J. Thompson. 1994. Clustal X Program. EMBL, Heidelberg, Germany.
  25. Hall, J.W. 1952. The comparative anatomy and phylogeny of the Betulaceae. Bot. Gaz. 113: 235-270. https://doi.org/10.1086/335717
  26. Hardin, J.W. and J.M. Bell. 1986. Atlas of foliar surface features in woody plants. IX. Betulaceae of eastern United States. Brittonia 38: 133-144. https://doi.org/10.2307/2807266
  27. Heywood, V.H. 1993. Flowering plants of the world. BT Batsford Ltd, London.
  28. Hjelmqvist. H. 1948. Studies on the floral morphology and phylogeny of Amentiferae. Bot. Not., Suppl. 21, 1-171.
  29. Hoar, C.S. 1916. The anatomy and phylogenetic position of the Betulaceae. Amer. J. Bot. 3: 415-435. https://doi.org/10.2307/2435234
  30. Hu, H.H. 1964. The materials on the monography of genus Carpinus Linn. of China. Acta Phytotax. Sin. 9: 281-298.
  31. Huelsenbeck, J.P. and F. Ronquist. 2001. MrBayes. Bayesian inference of phylogeny. Bioinformatics 17: 754-755. https://doi.org/10.1093/bioinformatics/17.8.754
  32. Hutchinson, J. 1967. The genera of flowering plants, vol. 2. Clarendon Press, Oxford.
  33. Jeon. J.-I and C.-S. Chang. 2000. Foliar flavonoids of genus Carpinus in eastern Asia, primarily based on native taxa to Korea. Kor. J. Plant Tax. 30: 139-153. https://doi.org/10.11110/kjpt.2000.30.2.139
  34. Kato. H., K, Oginuma, Z. Gu, B. Hammel and H. Tobe. 1998. Phylogenetic relationships of Betulaceae based on matK sequences with particular reference to the position of Ostryopsis. Acta Phytotax. Geobot. 49: 89-97.
  35. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. J. Molec. Evol. 16: 111-120. https://doi.org/10.1007/BF01731581
  36. Kikuzawa, K. 1982. Leaf survival and evolution in Betulaceae. Ann. Bot. 50: 345-353. https://doi.org/10.1093/oxfordjournals.aob.a086374
  37. Klosgen, R.B., A. Gierl, Z.S. Schwarz-Sommer and H. Saedler. 1986. Molecular analysis of the waxy locus of Zea may. Molec. Gen. Genet. 203: 237-244. https://doi.org/10.1007/BF00333960
  38. Kubitzki, K. 1993. The families and genera of vascular plants. vol. 2. Springer, Berlin.
  39. Levin, R.A. and J.S. Miller. 2005. Relationships within tribe Lycieae (Solanaceae): paraphyly of Lycium and multiple origins of gender dimorphism. Amer. J. Bot. 92: 2044-2053. https://doi.org/10.3732/ajb.92.12.2044
  40. Li, J. 2008. Sequences of low-copy nuclear gene support the monophyly of Ostrya and paraphyly of Carpinus (Betulaceae). J. System. Evol. 46: 333-340.
  41. Li, P.C. and S.X. Cheng. 1979. Betulaceae. Pp. 44-137. In: Kuang, K.Z. and P.C. Lee (eds.), Flora Reipublicae Popularis Sinicae, vol. 21. Science Press, Beijing.
  42. Mabberley. D.J. 1997. The plant book, 2nd ed. Cambridge University Press, Cambridge.
  43. Mason-Garner, R.J., C.F. Weil and E.A. Kellogg. 1998. Granule-bound starch synthase: structure, function, and phylogenetic utility. Mol. Biol. Evol. 15: 1658-1673. https://doi.org/10.1093/oxfordjournals.molbev.a025893
  44. Merida, A., J. M. Rodriguez-Galan, C. Vincent, and J. M. Romero. 1999. Expression of the granule-bound starch synthase I (waxy) gene from snapdragon is developmentally and circadian clock regulated. Pl. Physiol. 120: 401-409. https://doi.org/10.1104/pp.120.2.401
  45. Metcalfe, C.R. and L. Chalk. 1950. Anatomy of the dicotyledons, vol. 2. Clarendon Press, Oxford.
  46. Nakai, T. 1915. Flora Sylvatica Koreana, vol. 2. Chosen Government Press, Seoul.
  47. Posada. D. and T.R. Buckley. 2004. Model selection and model averaging in phylogenetics: advantages of the AIC and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53: 793-808. https://doi.org/10.1080/10635150490522304
  48. and K.A. Crandall. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817-818. https://doi.org/10.1093/bioinformatics/14.9.817
  49. Prantl, K. 1894. Betulaceae. Pp. 38-46. In: Engler, A. and K. Prantl (eds.), Die Naturlichen Pflanzenfamilien, vol. 3. Englemann, Leipzig.
  50. Rendle, A.B. 1925. The classification of flowering plants, 2nd ed. Cambridge University Press, Cambridge.
  51. Rohde, W., D. Becker and F. Salamini. 1988. Structural analysis of the waxy locus from Hordeum vulgare. Nucleic Acids Research 16: 7185-7186. https://doi.org/10.1093/nar/16.14.7185
  52. Schneider, C. 1916. Betulaceae. Pp. 423-508, in Plantae Wilsonianae: an enumeration of the woody plants collected in western China for the Arnold Arboretum of Harvard University during the years 1907, 1908, and 1910, vol. 2., ed., C.S. Sargent. Publications of the Arnold Arboretum, no. 4.
  53. Setoguchi, H., M. Ono, H. Koyama and M. Tsuda. 1997. Molecular phylogeny of Nothofagus (Nothofagaceae) based on the atpB-rbcL intergenic spacer of chloroplast DNA. J. Plant Res. 110: 469-484 https://doi.org/10.1007/BF02506808
  54. Shure, M., S. Wessler and N. Federoff. 1983. Molecular identification and isolation of the waxy locus in maize. Cell 35: 225-233. https://doi.org/10.1016/0092-8674(83)90225-8
  55. Spach. E. 1841. Notes sur les Corylus. Annals des Sciences Naturelles, ser. 2, 15: 98-108.
  56. Stone, D.E. 1973. Patterns in the evolution of amentiferous fruits. Brittonia 25: 371-384. https://doi.org/10.2307/2805641
  57. Swofford, D.L. 2003. PAUP. Phylogenetic analysis using parsimony (and other methods), Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts.
  58. Takhtajan, A. 1980. Outline of the classification of flowering plants (Magnoliophyta). Bot. Rev. 46: 225-359. https://doi.org/10.1007/BF02861558
  59. Thorne, R.F. 1992. Classification and geography of the flowering plants. Bot. Rev. 58: 226-257.
  60. Van Der Leij, F. R., R. G. F. Visser, A. S. Ponstein, E. Jacobsen, and W. J. Feenstra. 1991. Sequence of the structural gene for granule-bound starch synthase of potato (Solanum tuberosum L.) and evidence for a single point deletion in the amf allele. Mol. Gen. Genet. 228: 240-248. https://doi.org/10.1007/BF00282472
  61. Wang, Z., Z. Wu, Y. Xing, F. Zheng, X. Guo, W. Zang, and M. Hong. 1990. Nucleotide sequence of rice waxy gene. Nucl. Acids Res. 18: 5898. https://doi.org/10.1093/nar/18.19.5898
  62. Wang, S. J., K. W. Yen, and C. Y. Tsai. 1999. Molecular characterization and expression of starch granule-bound starch synthase in the sink and source tissues of sweet potato. Physiol. Pl. 106: 253-261. https://doi.org/10.1034/j.1399-3054.1999.106301.x
  63. Whitcher, I.N. 1999. The systematics and biogeography of hazelnuts, Corylus L. (Betulaceae). M.S. thesis. Fort Collins, CO: Colorado State University.
  64. Whitcher, I.N. and J. Wen. 2001. Phylogeny and biogeography of Cotylus (Betulaceae): inference from ITS sequences. Syst. Bot. 26: 283-298.
  65. Winkler, H. 1904. Betulaceae. Pp. 1-149. In: Engler, A. and K. Prantl (eds.), Die Naturlichen Pflanzenfamilien. 19 (IV, 61). Englemann, Peipzig.
  66. Woodworth, R.H. 1929. Cytological studies in the Betulaceae. II. Alnus and Corylus. Bot. Gaz. 88: 383-399. https://doi.org/10.1086/334010
  67. Woodworth, R.H. 1930. Cytological studies in the Betulaceae. IV. Betula, Carpinus, Ostrya, Ostryopsis. Bot. Gaz. 90: 108-115. https://doi.org/10.1086/334087
  68. Woodworth, R.H. 1931. Polyploidy in the Betulaceae. J. Arnold Arbor. 12: 206-217. https://doi.org/10.5962/bhl.part.2815
  69. Yoo, K.-O. and J. Wen. 2002. Phylogeny and biogeography of Carpinus and subfamily Coryloideae (Betulaceae). Int. J. Plant Sci. 163: 641-650. https://doi.org/10.1086/340446
  70. Yoo, K.-O. and J. Wen. 2007. Phylogeny of Carpinus and subfamily Coryloideae (Betulaceae) based on chloroplast and nuclear ribosomal sequence data. Pl. Syst. Evol. 267: 25-35. https://doi.org/10.1007/s00606-007-0533-2