술폰화된 PolySEBS/PS Blending 필름의 제조

Preparation of Sulfonated PolySEBS/PS Blending Films

  • 장석용 (한국산업기술대학교 지식기반기술.에너지대학원) ;
  • 한신호 (한국산업기술대학교 지식기반기술.에너지대학원)
  • Jang, Suk-Yong (Graduate School of Knowledge Based Technology and Energy, Korea Polytechnic University) ;
  • Han, Sien-Ho (Graduate School of Knowledge Based Technology and Energy, Korea Polytechnic University)
  • 투고 : 2008.01.16
  • 심사 : 2008.02.04
  • 발행 : 2008.04.10

초록

저가인 aromatic elastomer polymer인 polySEBS와 PS의 방향족 작용기에 술폰기를 도입시킴으로써 sulfonated polySEBS과 sulfonated PS를 얻었다. 이 술폰화된 고분자를 활용하여 고분자 전해질 연료전지의 이온 교환막으로 사용될 수 있는 새로운 sulfonated polySEBS/sulfonated PS blending films를 제조하였다. 이 필름들의 수소이온 전도도는 sulfonated polySEBS와 sulfonated PS의 혼합비에 따라 $10^{-2}{\sim}10^{-3}S/cm$로 다양하게 나타났다. 특히, sulfonated polySEBS 10.0 g에 sulfonated PS를 0.5 g 첨가하여 제조한 film이 0.75 meq/g의 이온교환용량 및 25%의 함수율과 함께 가장 우수한 0.07 S/cm의 이온전도도를 나타냈다.

Sulfonated polySEBS and sulfonated PS were synthesized by sulfonation at the aromatic group of polySEBS and PS. Novel sulfonated polySEBS/sulfonated PS blending films for the ion exchange membrane of polymer electrolyte fuel cell were prepared from these sulfonated polymers. The proton conductivities of these blending films were varied in $10^{-2}{\sim}10^{-3}S/cm$ with the blending ratio of sulfonated polySEBS/sulfonated PS. Especially, the film prepared from the addition of the sulfonated PS (0.5 g) in the sulfonated polySEBS (10.0 g) has the best proton conductivity (0.07 S/cm) with ion exchange capacity (0.75 meq/g) and water uptake (25%).

키워드

참고문헌

  1. M. Rikukawa and K. Sanui, Prog. Polym. Sci., 25, 1463 (2000) https://doi.org/10.1016/S0079-6700(00)00032-0
  2. W. L. Harrison, F. Wang, J. B. Mecham, V. A. Bhanu, M. Hill, Y.-S. Kim, and J. E. Mcgrath, J. Polym. Sci.: Part A: Polym. Chem., 41, 2264 (2003) https://doi.org/10.1002/pola.10755
  3. F. Wang, M. Hickner, Y.-S. Kim, T. A. Zawodzinki, and J. E. McGrath, J. Polym. Sci., 197, 231 (2002)
  4. E. Bucio, J. and W. Fitch, Polymer., 46, 3971 (2005) https://doi.org/10.1016/j.polymer.2005.03.048
  5. N. Kaskhedikar, J. Paulsdorf, M. Burjanadze, Y. Karatas, B. Roling, and H.-D. Wiemhofer, Solid State Ionics., 177, 2699 (2006) https://doi.org/10.1016/j.ssi.2006.05.003
  6. C.-H. Lee, S.-Y. Hwang, J.-Y. Sohn, H.-O. Park, J.-Y. Park, and Y.-M. Lee, J. Power Sources., 163, 339 (2006) https://doi.org/10.1016/j.jpowsour.2006.09.023
  7. B. Smitha, S. Sridhar, and A. A. Khan, J. Membr. Sci., 225, 63 (2003) https://doi.org/10.1016/S0376-7388(03)00343-0
  8. C.-P. Wang, H.-S. Chu, Y.-Y. Yan, and K.-L. Hsueh, J. Power Sources., 170, 235 (2007) https://doi.org/10.1016/j.jpowsour.2007.03.070
  9. S. Sambandam and V. Ramani, J. Power Sources., 170, 259 (2007) https://doi.org/10.1016/j.jpowsour.2007.04.026
  10. H.-O. Jung, K.-Y. Cho, K.-A. Sung, W.-K. Kim, and J.-K. Park, J. Power Sources., 163, 56 (2006) https://doi.org/10.1016/j.jpowsour.2006.01.075
  11. Y. Gao, G. P. Robertson, M. D. Guiver, X. Jian, S. D. Mikhailenko, K. Wang, and S. Kaliaguine, J. Membr. Sci., 227, 39 (2003) https://doi.org/10.1016/j.memsci.2003.08.020
  12. C. B. Yoon, W. H. Meyer, and G. Wegner, Synthetic Metal., 119, 465 (2001) https://doi.org/10.1016/S0379-6779(00)01461-2
  13. J. Shen, J. Xi, W. Zhu, L. Chen, and X. Qiu, J. Power Sources., 159, 894 (2006) https://doi.org/10.1016/j.jpowsour.2005.11.070
  14. P. Bebin, M. Caravanier, and H. Galiano, J. Membr. Sci., 278, 35 (2006) https://doi.org/10.1016/j.memsci.2005.10.042
  15. M. J. Sumner, W. L. Harrison, R. M. Weyers, Y. S. Kim, J. E. McGrath, J. S. Riffle, A. Brink, and M. H. Brink, J. Membr. Sci., 239, 199 (2004) https://doi.org/10.1016/j.memsci.2004.03.031
  16. C. A. Edmondson and J. J. Fontanella, Solid State Ionics., 152, 355 (2002) https://doi.org/10.1016/S0167-2738(02)00336-3