Synthesis and Characterization of Iron Incorporated MCM-41

철 혼입 MCM-41 촉매의 제조 및 특성 연구

  • 조득희 (한국화학연구원 신화학연구단) ;
  • 진항교 (한국화학연구원 신화학연구단)
  • Received : 2008.02.04
  • Accepted : 2008.02.26
  • Published : 2008.04.10

Abstract

The iron incorporation method according to addition steps during the synthesis of iron incorporated MCM-41 was examined systematically. Iron addition during pH adjustment was more effective than the other addition steps which were addition to template agent solution or addition after mixing of template agent and sodium silicate solution. In case of iron addition after extraction of template agent from as-synthesized silica MCM-41, most of the iron was on the surface of pores not the frame work structure. Although the amount of iron addition was increased, there was a limit to the amount of iron incorporated into framework structure of MCM-41. The synthesized FeMCM-41 catalyst showed catalytic activities for propylene oxidation. Otherwise, there might be no attractive differences of catalytic activity among the addition steps of iron.

철이 혼입된 FeMCM-41을 제조할 때 철의 전구체를 투입하는 시기에 따라 FeMCM-41의 특성이 다르게 나타났다. 철의 전구체를 주형물질 용액에 넣거나 주형물질과 규산나트륨 수용액의 혼합 후 투입하는 것보다는 pH의 조절 중에 투입하는 것이 철 전구물질의 투입에 가장 효과적인 방법으로 판단되었다. 규소로만 된 MCM-41을 만들고 여기에서 주형물질을 용매 추출해 낸 다음 철을 투입하는 경우에는 철이 혼입되는 양도 적고 혼입되더라도 대부분 골격 외부, 즉 세공 표면에 그대로 존재하는 것으로 판단되었다. 또한 각 시기별로는 철의 투입량이 증가함에 따라 철이 메조포어의 격자 내로 혼입되는 양에는 한계량이 존재하였다. FeMCM-41 촉매는 프로필렌의 산화반응에 활성을 보였으며, 철의 전구체를 투입하는 시기에 따라 제조한 것들 간의 반응성의 차이는 거의 발견되지 않았다.

Keywords

References

  1. A. Corma, M. Iglesias, and F. Sanchez, J. Chem. Soc. Chem. Commun., 1635 (1995)
  2. P. T. Tanev, M. Chibwe, and T. J. Pinnavaia, Nature, 368, 321 (1994) https://doi.org/10.1038/368321a0
  3. R. Hutter, D. C. M. Dutoit, T. Mallart. M. Schneider, and A. Baiker, J. Chem. Soc. Chem. Commun., 163 (1995)
  4. S. Gontier and A. Tuel, J. Catal., 157, 124 (1995) https://doi.org/10.1006/jcat.1995.1273
  5. Z. Luan, C.-F. Cheng, W. Zhou, and J. Klinowski, J. Phys. Chem., 99, 1018 (1995) https://doi.org/10.1021/j100003a026
  6. R. B. Borade and A. Clearfield, Catal. Lett., 31, 267 (1995) https://doi.org/10.1007/BF00808839
  7. K. M. Reddy, I. Moudrakovski, and A. Sayari, J. Chem. Soc., Chem. Commun., 1059 (1994)
  8. Z. Luan, J. Xu, H. Y. He, J. Klinowski, and L. Kevan, J. Phys. Chem., 100, 19595 (1996) https://doi.org/10.1021/jp962353j
  9. D. Trong On, P. N. Joshi, and S. Kaliaguine, J. Phys. Chem., 100, 6743 (1996) https://doi.org/10.1021/jp953516r
  10. A. Sayari, I. Moudrakovski, C. Danumah, C. I. Ratclitte, J. A. Ripmeester, and K. F. Preston, J. Phys. Chem., 99, 16373 (1995) https://doi.org/10.1021/j100044a026
  11. D. Zhao and D. Goldfarb, J. Chem. Soc., Chem. Commun., 875 (1995)
  12. D. Y. Zhao and D. Goldfarb, Zeolites: A Refined Tool for Designing Catalytic Sites, ed. L. Bonneviot and S. Kaliaguine 13, 181, Elsevier, Amsterdam (1995)
  13. D. M. Antonelli and J. Y. Ying, Chem. Mater., 8, 874 (1996) https://doi.org/10.1021/cm9504697
  14. A. Poppl, M. Newhouse, and L. Kevan, J. Phys. Chem., 99, 10019 (1995) https://doi.org/10.1021/j100024a051
  15. Z. Y. Yuan, S. Q. Liu, T. H. Chen, J. Z. Wang, and H. X. Li, J. Chem. Soc., Chem. Commun., 973 (1995)
  16. N. Ulagappan and C. N. R. Rao, Chem. Commun., 1047 (1996)
  17. C.-F. Cheng, H. He, W. Zhou, and J. Klinowski, J. Phys. Chem., 100, 390 (1996) https://doi.org/10.1021/jp952410t
  18. A. Poppl, P. Baglioni, and L. Kevan, J. Phys. Chem., 99, 14156 (1995) https://doi.org/10.1021/j100038a057
  19. M. Hartman, A. Poppl, and L. Kevan, J. Phys. Chem., 99, 17494 (1995) https://doi.org/10.1021/j100049a004
  20. S. Ayyappan and N. Ulagappan, Proc. Indian Acad. Sci. (Chem. Sci.) 108, 505 (1996)
  21. M. Cheng, F. Kumata, T. Saito, T. Komatsu, and T. Yashima, Mesoporous Moleclar Sieves 1998, ed. L. Bonneviot, F. Beland, C. Danumah, S. Giasson, and S. Kaliaguine, 485, Elsevier, Amsterdam (1998)
  22. M. Cheng, F. Kumata, T. Saito, T. Komatsu, and T. Yashima, Mesoporous Moleclar Sieves 1998, ed. L. Bonneviot, F. Beland, C. Danumah, S. Giasson, and S. Kaliaguine, 493, Elsevier, Amsterdam (1998)
  23. D.-H. Cho, T.-S. Chang, S.-K. Ryu, and Y. K. Lee, Cat. Lett., 64, 227 (2000) https://doi.org/10.1023/A:1019095222108
  24. K. G. Ione, L. A. Vostrikora snd V. M. Mastikhin, J. Mol. Catal., 37, 355 (1985)
  25. A. N. Kotasthane, V. P. Shiralkar, S. G. Hedge, and S. B. Kulharni, Zeolites, 6, 253 (1986) https://doi.org/10.1016/0144-2449(86)90077-1
  26. S. S. Yoon, J. S. Choi, H. J. Choi, and W. S. Ahn, Korean Chem. Eng. Res., 43, 215 (2005)
  27. Y. Han, F. S. Xiao, S. Wu, Y. Sun, X. Meng, D. Li, and S. Lin, J. Phys. Chem. B, 105, 7963 (2001) https://doi.org/10.1021/jp011204k
  28. G. Calis, P. Frenken, E. de Boer, A. Swolfs, and M. A. Hefni, Zeolites, 7, 319 (1987) https://doi.org/10.1016/0144-2449(87)90034-0
  29. G. Bellussi, R. Millini, A. Carati, G. Maddinelli, and A. Gervasini, Zeolites, 10, 642 (1990) https://doi.org/10.1016/0144-2449(90)90073-Z
  30. H. Kosslik, G. Lischke, G. Walther, W. Storek, A. Martin, and R. Fricke, Microporous Mater., 9, 13 (1997) https://doi.org/10.1016/S0927-6513(96)00087-9
  31. H. Kosslick, G. Lischke, H. Landmesser, B. Parltz, W. Storek, and R. Fricke, J. Catal., 176, 102 (1998) https://doi.org/10.1006/jcat.1998.2015
  32. A. Tuel and S. Gontier, Chem. Mater., 8, 114 (1996) https://doi.org/10.1021/cm950276j
  33. J.-M. Cao, J.-L. Dong, and Q.-H. Xu, Huaxue Xuebao, 58, 75 (2000)
  34. S. K. Badamali, A. Sakthivel, and P. Selvam, Catal. Lett., 65, 153 (2000)
  35. P. Decyk, M. Trejda, M. Ziolek, and A. Lewandowska, Impact of Zeolites and Other Porous Materials on the New Technologies at the Beginning of the New Millennium in series of Studies in Surface Science and Catalysis, 142B, ed. R. Aiello, F. Testa, and G. Giordano, 1785, Elsevier, Amsterdam (2002)
  36. J. R. C. Bispo, A. C. Oliveira, M. L. S. Correa, J. L. G. Fierro, S. G. Marchetti, and M. C. Rangel, Impact of Zeolites and Other Porous Materials on the New Technologies at the Beginning of the New Millennium in series of Studies in Surface Science and Catalysis, 142B, ed. R. Aiello, F. Testa, and G. Giordano, 517, Elsevier, Amsterdam (2002)
  37. Z. Huang, Guangxi Minzu Xueyuan Xuebao, Ziran Kexueban, 10, 91 (2004)
  38. K. Lazar, A. Szegedi, G. Pal-Borbely, A. N. Kotasthane, and P. Fejes, Catal. Today, 110, 239 (2005) https://doi.org/10.1016/j.cattod.2005.09.024
  39. P. Selvam and S. K. Mohapatra, J. Catal., 238, 88 (2006) https://doi.org/10.1016/j.jcat.2005.12.005
  40. J.-R. Ko and W.-S. Ahn, J. Nanoscience and Nanotechnology, 6, 3442 (2006) https://doi.org/10.1166/jnn.2006.030
  41. R. Ryoo and J. M. Kim, J. Chem. Soc., Chem. Commun., 711 (1995)
  42. R. Ryoo and S. Jun, J. Phys. Chem., B 101, 317 (1997) https://doi.org/10.1021/jp962500d
  43. J. M. Kim and R. Ryoo, Bull. Korean Chem. Soc., 17, 66 (1996)
  44. A. Corma, A. Martinez, V. Martinez-Soria, and J. B. Monton, J. Catal., 153, 25 (1995) https://doi.org/10.1006/jcat.1995.1104
  45. C. Y. Chen, H. Y. Li, and M. E. Davis, Microporous Mater., 2, 17 (1993) https://doi.org/10.1016/0927-6513(93)80058-3
  46. P. T. Tanev and T. J. Pinnavaia, Chem. Mater., 8, 2068 (1996) https://doi.org/10.1021/cm950549a
  47. X. S. Zhao, G. Q. Lu, A. K. Whittaker, G. J. Millar, and H. Y. Zhu, J. Phys. Chem. B, 101, 6525 (1997) https://doi.org/10.1021/jp971366+
  48. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th edition, John Wiley & Sons, New York, 712 (1988)