Preparation of the Blends of Poly(amic acid) and PBO Precursor and Their Properties

Poly(amic acid)와 PBO 전구체의 블렌드 제조 및 특성

  • Yoon, Doo-Soo (Department of Polymer Science & Engineering, Chosun University) ;
  • Choi, Jae-Kon (Department of Polymer Science & Engineering, Chosun University) ;
  • Jo, Byung-Wook (Department of Chemical Engineering, Chosun University)
  • 윤두수 (조선대학교 공과대학 고분자공학과) ;
  • 최재곤 (조선대학교 공과대학 고분자공학과) ;
  • 조병욱 (조선대학교 공과대학 화학공학과)
  • Published : 2008.01.31

Abstract

The thermal properties, morphology, mechanical properties and gas permeability of the blends of poly (amic acid) (PAA) and poly (o-hydroxyamides) (PHAs) having pendant group was investigated. The 5% weight loss and major weight loss of the b)ends occurred in the ranges of $348{\sim}407^{\circ}C$ and $589{\sim}615^{\circ}C$ upon a heating process. After a thermical annealing, the tensile strength and initial modulus of blends increased $3.7{\sim}52.9%$ and $34.4{\sim}70%$ from the value of pure PAA, respectively. Especially the tensile strength and modulus of the PAA/MP-PHA=9/1 showed the highest values (97.5 MPa and 2.67 GPa, respectively), which were 53 and 70% higher than those of pure PAA. The fine PHA domains were found to be uniformly dispersed. The interfacial adhesion between PAA and PHA was identified to be good. The gas permeabilities of PAA/M-PHA blend increased with M-PHA contents.

Poly(amic acid) (PAA)와 팬던트를 갖는 poly(o-hydroxyamides) (PHAs)를 섞은 고분자 블렌드의 열적 성질, 모폴로지, 기계적 성질, 기체투과도 등을 조사하였다. 블렌드들의 5%와 최대분해온도는 각각 $348{\sim}407$, $589{\sim}615^{\circ}C$의 범위를 가졌다. 열처리후 블렌드들의 인장강도와 초기 탄성률은 순수한 PAA보다 각각 $3.7{\sim}52.9$, $34.4{\sim}70%$ 증가하였으며, 특히 PAA/MP-PHA=9/1의 경우 각각 97.50 MPa, 2.67 GPa로써 최대 값을 보였다. 블렌드에서 PHA의 domain들의 분산정도는 비교적 균일하게 잘 분산되어 있었으며 PAA와 PHA두 상간의 계면 접착력이 매우 좋음을 확인하였다. PAA/M-PHA 블렌드의 기체투과도는 M-PHA의 함량 증가와 함께 증가하였다.

Keywords

References

  1. C. E. Stroog, Prog. Polym. Sci., 16, 561 (1991) https://doi.org/10.1016/0079-6700(91)90010-I
  2. M. I. Bessonov, M. M. Koton, V. V. Kundryavtsev, and L. A. Laius, Polyimides, Consultants Bureau, 1987
  3. F. A. King, and J. J. King, Engineering, thermoplastics, Marcel Dekker Inc., N.Y., 1985
  4. K. L. Mittal, Ed., Polyimides, Plenum Press, N. Y., Vol. 1&2 (1984)
  5. Y. Imai, K. Itoya, and M. A. Kakimoto, Macromol. Chem. Phys., 201, 2251 (2000) https://doi.org/10.1002/1521-3935(20001101)201:17<2251::AID-MACP2251>3.0.CO;2-W
  6. M. E. Hunsaker, G. E. Price, and S. J. Bai, Polymer, 33, 2128 (1992) https://doi.org/10.1016/0032-3861(92)90879-2
  7. S. A. Jenekhe, J. A. Osaheni, J. S. Meth, and H. Vanherzeele, Chem. Mater., 4, 683 (1992) https://doi.org/10.1021/cm00021a034
  8. N. Ogata, Makromol. Chem. Macromol. Symp., 53, 191 (1992)
  9. J. F. Wolfe, Encycl. Polym. Sci. Eng., 11, 601 (1988)
  10. H. H. Yang, Aromatic High-strength Fibers, John Wiley and Sons, New York, 1989
  11. Y. Maruyama, Y. Oishi, M. Kakimoto, and Y. Iami, Macromolecules, 21, 2305 (1988) https://doi.org/10.1021/ma00186a001
  12. J. G. Hilborn, J. W. Labadie, and J. L. Hedrick, Macromolecules, 23, 2854 (1990) https://doi.org/10.1021/ma00213a006
  13. S. H. Hsiao and M. M. He, J. Polym. Sci.; Part A: Polym. Chem., 39, 4014 (2001) https://doi.org/10.1002/pola.10039
  14. S. L. C. Hsu and W. C. Chen, Polymer, 43, 6743 (2002) https://doi.org/10.1016/S0032-3861(02)00635-3
  15. Angel M.-F., Angel E. Lozano, Javier de abajo, and Jose G. de la campa, Polymer, 42, 7933 (2001) https://doi.org/10.1016/S0032-3861(01)00316-0
  16. H. L. Tyan, Y. C. Liu, and K. H. Wei, Polymer, 40, 4877 (1999) https://doi.org/10.1016/S0032-3861(98)00716-2
  17. D. S. Yoon, J. K. Choi, and B. W. Jo, Polymer(Korea), 29, 493 (2005)
  18. C. K. Yeom, C. U. Kim, B. S. Kim, K. J. Kim, and J. M. Lee, Membrane J., 8, 2, 86 (1998)
  19. C. K. Yeom, C. U. Kim, B. S. Kim, K. J. Kim, and J. M. Lee, J. Membr. Sci., 161, 55 (1999) https://doi.org/10.1016/S0376-7388(99)00099-X
  20. J. H. Chang, and K. M. Park, Eur. Polym. J., 36, 2185 (2000) https://doi.org/10.1016/S0014-3057(99)00280-3
  21. Y. Imai, K. Itoya, and M. A. Kakimoto, Macromol. Chem. Phys., 201, 2251 (2000) https://doi.org/10.1002/1521-3935(20001101)201:17<2251::AID-MACP2251>3.0.CO;2-W
  22. S. H. Hsiao and W. T. Chen, J. Polym. Sci.; Part A: Polym. Chem., 41, 914 (2003) https://doi.org/10.1002/pola.10630
  23. Rao G. Ramana, C. Catiglioni, M. Gussoni, G. Zerbi, and E. Martuscelli, Polymer, 26, 811 (1985) https://doi.org/10.1016/0032-3861(85)90122-3
  24. K. S. Yang, Dan D. Edie, D. Y. Lim, Y. M. Kim, and Y. O. Choi, Carbon, 41, 2039 (2003) https://doi.org/10.1016/S0008-6223(03)00174-X
  25. J. K. Choi, J. Zilberman, and R. J. Farris, CUMIRP Report (Univ. Mass.), Massachusetts, U.S.A., Part 1 (2006)
  26. X. Wang and X. Luo, Eur. Polym. J., 40, 2391 (2004) https://doi.org/10.1016/j.eurpolymj.2004.06.008
  27. J. H. Chang and R. J. Farris, Polym. Eng. Sci., 40, 320 (2000) https://doi.org/10.1002/pen.11165
  28. J. Ramiro, J. I. Eguiazabal, and J. Nazabal, Polym. Adv. Technol., 14, 129 (2003) https://doi.org/10.1002/pat.340
  29. B. W. Jo, J. K. Choi, J. S. Kim, and S. K. Choi, Elastomer, 40, 136 (2005)
  30. G. Maier, Angew. Chem. Int. Ed., 37, 2960 (1998) https://doi.org/10.1002/(SICI)1521-3773(19981116)37:21<2960::AID-ANIE2960>3.0.CO;2-5
  31. Y. H. Kim, S. I. Kim, and J. H. Kim, J. Korean. Ind. Eng. Chem., 13, 262 (2002)