The Central Concept for Chitin Catabolic Cascade in Marine Bacterium, Vibrios

  • Jung, Byung-Ok (Department of Food Science and Technology, Seoul National University of Technology) ;
  • Roseman, Saul (Department of Biology, The Johns Hopkins University) ;
  • Park, Jae-Kweon (Department of Biology, The Johns Hopkins University, Department of Biological Engineering, Institute of Industrial Engineering, Inha University)
  • Published : 2008.01.31

Abstract

The enzymatic hydrolysis of chitin has been studied for almost a century, and early work established that at least two enzymes are required, a chitinase that mainly yields the disaccharide N,N'-diacetylchitobiose, or $(GlcNAc)_2$, and a "chitobiase", or ${\beta}$-N-acetylglucosaminidase, which gives the final product G1cNAc. This pathway has not been completely identified but has remained the central concept for the chitin catabolism through the $20^{th}$ century1 including in marine bacteria. However, the chitin catabolic cascade is quite complex, as described in this review. This report describes three biologically functional genes involved in the chitin catabolic cascade of Vibrios in an attempt to better understand the metabolic pathway of chitin.

Keywords

References

  1. W. A. Wood and S. T. Kellog, Methods Enzymol., 161, (1988).
  2. R. W. Soto-Gil and J. W. Zyskind, in Chitin, Chitosan and Related Enzymes, J. P. Zikakis, Ed., Academic Press, Orlando, FL., 1984.
  3. B. L. Bassler, P. J. Gibbons, C. Yu, and S. Roseman, J. Biol. Chem., 266, 24268 (1991).
  4. B. L. Bassler, C. Yu, Y. C. Lee, and S. Roseman, J. Biol. Chem., 266, 24276 (1991).
  5. B. L. Bassler and S. Roseman, J. Biol. Chem., 268, 9405 (1993).
  6. C. Yu, A. M. Lee, B. L. Bassler, and S. Roseman, J. Biol. Chem., 266, 24260 (1991).
  7. N. O. Keyhani and S. Roseman, Biochim. Biophys. Acta, 1473, 108 (1999). https://doi.org/10.1016/S0304-4165(99)00172-5
  8. N. O. Keyhani, L.-X. Wang, Y. C. Lee, and S. Roseman, J. Biol. Chem., 271, 33409 (1996). https://doi.org/10.1074/jbc.271.52.33409
  9. N. O. Keyhani and S. Roseman, J. Biol. Chem., 271, 33414 (1996). https://doi.org/10.1074/jbc.271.52.33414
  10. N. O. Keyhani and S. Roseman, J. Biol. Chem., 271, 33425 (1996). https://doi.org/10.1074/jbc.271.52.33425
  11. E. Chitlaru and S. Roseman, J. Biol. Chem., 271, 33433 (1996). https://doi.org/10.1074/jbc.271.52.33433
  12. C. L. Bouma and S. Roseman, J. Biol. Chem., 271, 33457 (1996). https://doi.org/10.1074/jbc.271.52.33457
  13. N. O. Keyhani, X. Li, and S. Roseman, J. Biol. Chem., 275, 33068 (2000). https://doi.org/10.1074/jbc.M001041200
  14. J. G. Voet and R. H. Abeles, J. Biol. Chem., 245, 1020 (1970).
  15. J. J. Mieyal and R. H. Abeles, in The Enzymes, P. D. Boyer, Ed., Academic Press, New York, 1972, Vol. 7, pp. 515-532.
  16. M. Kitaoka, T. Sasaki, and H. Taniguchi, Biosci. Biotech. Biochem., 56, 652 (1992). https://doi.org/10.1271/bbb.56.652
  17. J. K. Park, N. O. Keyhani, and S. Roseman, J. Biol. Chem., 275, 33077 (2000). https://doi.org/10.1074/jbc.M001042200
  18. I. H. Segel, Biochemical Calculations , 2nd Ed. , John Wiley & Sons, New York, 1976.
  19. W. Kundig, S. Ghosh, and S. Roseman, Proc. Natl. Acad. Sci., U. S. A., 52, 1067 (1964).
  20. P. W. Postma, J. W. Lengeler, and G. R. Jacobson, Microbiol. Rev., 57, 543 (1993).
  21. S. Roseman, J. Biol. Chem., 226, 115 (1957).
  22. E. A. Davidson, H. J. Blumenthal, and S. Roseman, J. Biol. Chem., 226, 125 (1957).
  23. D. G. Comb and S. Roseman, J. Biol. Chem., 232, 807 (1958).
  24. J. Plumbridge, Mol. Microbiol., 3, 505 (1989). https://doi.org/10.1111/j.1365-2958.1989.tb00197.x
  25. J. Plumbridge, Mol. Microbiol., 5, 2053 (1991). https://doi.org/10.1111/j.1365-2958.1991.tb00828.x
  26. J. Plumbridge, Nucleic Acids Res., 29, 1 (2001). https://doi.org/10.1093/nar/29.1.1
  27. J. L. Reissig, J. Biol. Chem., 219, 753 (1956).
  28. A. Fernandez-Sorensen and D. M. Carlson, J. Biol. Chem., 246, 3485 (1971).
  29. D. M. Carlson, Methods Enzymol., 8, 179 (1966). https://doi.org/10.1016/0076-6879(66)08028-5
  30. C. Asensio and M. Ruiz-Amil, Methods Enzymol., 9, 421 (1966). https://doi.org/10.1016/0076-6879(66)09086-4
  31. J. K. Park, L.-X. Wang, and S. Roseman, J. Biol. Chem., 277, 15573 (2002). https://doi.org/10.1074/jbc.M107953200
  32. J. K. Park, L.-X. Wang, H. V. Patel, and S. Roseman, J. Biol. Chem., 277, 29555 (2002). https://doi.org/10.1074/jbc.M202978200
  33. D. P. Dharmawardhana, B. E. Ellis, and J. E. Carlson, Plant Physiol. (Bethesda), 107, 331 (1995). https://doi.org/10.1104/pp.107.2.331
  34. L. A. Castle, K. D. Smith, and R. O. Morris, J. Bacteriol., 174, 1478 (1992) https://doi.org/10.1128/jb.174.5.1478-1486.1992