NONEXISTENCE OF NODAL SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATION WITH SOBOLEV-HARDY TERM

  • 투고 : 2008.11.14
  • 발행 : 2008.12.25

초록

Let $B_1$ be a unit ball in $R^n(n{\geq}3)$, and $2^*=2n/(n-2)$ be the critical Sobolev exponent for the embedding $H_0^1(B_1){\hookrightarrow}L^{2^*}(B_1)$. By using a variant of Pohoz$\check{a}$aev's identity, we prove the nonexistence of nodal solutions for the Dirichlet problem $-{\Delta}u-{\mu}\frac{u}{{\mid}x{\mid}^2}={\lambda}u+{\mid}u{\mid}^{2^*-2}u$ in $B_1$, u=0 on ${\partial}B_1$ for suitable positive numbers ${\mu}$ and ${\nu}$.

키워드