References
- Bielinska-Waz, D., Clark, T., Waz, P., Nowak, W. and Nandy, A. (2007) 2D-dynamic representation of DNA sequences. Chem. Phys. Lett. 442, 140-144 https://doi.org/10.1016/j.cplett.2007.05.050
- Bielinska-Waz, D., Nowak, W., Waz, P., Nandy, A. and Clark, T. (2007) Distribution moments of 2D-graphs as descriptors of DNA sequences. Chem. Phys. Lett. 443, 408-413 https://doi.org/10.1016/j.cplett.2007.06.088
- Gates, M. A. (1986) A simple way to look at DNA. J. Theor. Biol. 119, 319-328 https://doi.org/10.1016/S0022-5193(86)80144-8
- Guo, X. F., Randic, M. and Basak, S. C. (2001) A novel 2-D graphical representation of DNA sequences of low degeneracy. Chem. Phys. Lett. 350, 106-112 https://doi.org/10.1016/S0009-2614(01)01246-5
- Hamori, E. and Ruskin, J. (1983) H curves, a novel method of representation of nucleotide series especially suited for long DNA sequences. J. Biol. Chem. 258, 1318
- Jeffrey, H. I. (1990) Chaos game representation of gene structure. Nucleic Acid Res. 18, 2163-2170 https://doi.org/10.1093/nar/18.8.2163
- Leong, P. M. and Morgenthaler, S. (1995) Random walk and gap plots of DNA sequences. Comput. Applic. Biosci. 12, 503-511
- Li, C. and Wang, J. (2004) On a 3-D representation of DNA primary sequences. Comb. Chem. High T. Scr. 7, 23-27
- Li, C., Tang, N. N. and Wang, J. (2006) Directed graphs of DNA sequences and their numerical characterization. J. Theor. Biol. 241, 173-177 https://doi.org/10.1016/j.jtbi.2005.11.023
- Li, C. and Hu, J. (2006) 2-D Graphical representation for characteristic sequences of DNA and its application. J. Biochem. Mol. Biol. 39, 292-296 https://doi.org/10.5483/BMBRep.2006.39.3.292
- Nandy, A. (1994) A new graphical representation and analysis of DNA sequence structure: I. Methodology and application to globin genes. Curr. Sci. 66, 309-313
- Nandy, A. (1994) Graphical representation of long DNA sequences. Curr. Sci. 66, 821
- Nandy, A., Harle, M. and Basak, S. C. (2006) Mathematical descriptors of DNA sequences: development and applications. ARKIVOC 9, 211-238
- Randic, M., Vracko, M., Nandy, A. and Basak, S. C. (2000) On 3-D graphical representation of DNA primary sequence and their numerical characterization. J. Chem. Inf. Comput. Sci. 40, 1235-1244 https://doi.org/10.1021/ci000034q
- Randic, M., Guo, X. F. and Basak S. C. (2001) On the Characterization of DNA primary sequences by triplet of nucleic acid bases. J. Chem. Inf. Comptu. Sci. 41, 619-626 https://doi.org/10.1021/ci000120q
- Randic, M. and Balaban, A. T. (2003) On a four-dimensional representation of DNA primary sequences. J. Chem. Inf. Comptu. Sci. 43, 532-539 https://doi.org/10.1021/ci020051a
- Randic, M., Vracko, M., Lers, N. and Plavsic, D. (2003) Novel 2-D graphical representation of DNA sequences and their numerical characterization. Chem. Phys. Lett. 368, 1-6 https://doi.org/10.1016/S0009-2614(02)01784-0
- Randic, M., Vracko, M., Lers, N. and Plavsic, D. (2003) Analysis of similarity/dissimilarity of DNA sequences based on novel 2-D graphical representation. Chem. Phys. Lett. 371, 202-207 https://doi.org/10.1016/S0009-2614(03)00244-6
- Randic, M., Vracko, M., Zupan, J. and Novic M. (2003) Compact 2-D graphical representation of DNA. Chem. Phys. Lett. 373, 558-562 https://doi.org/10.1016/S0009-2614(03)00639-0
- Randic, M. (2004) Graphical representations of DNA as 2-D map. Chem. Phys. Lett. 386, 468-471 https://doi.org/10.1016/j.cplett.2004.01.088
- Randic, M. and Zupan, J. (2004) Highly compact 2-D graphical representation of DNA sequences. SAR QSAR Environ. Res. 15, 191-205 https://doi.org/10.1080/10629360410001697753
- Roy, A., Raychaudhury, C. and Nandy, A. (1998) A novel technique of graphical representation and analysis of DNA sequences-A review. J. Biosci. 23, 55-71 https://doi.org/10.1007/BF02728525
- Wu, Y. H., Liew, A. W., Yan, H. and Yang, M. (2003) DB-Curve: a novel 2D method of DNA sequence visualization and representation. Chem. Phys. Lett. 367, 170-176 https://doi.org/10.1016/S0009-2614(02)01684-6
- Zhang, R. and Zhang, C. T. (1994) Z curves, an intuitive tool for visualizing and analyzing DNA sequences. J. Biomol. Struc. Dyn. 11, 767-782 https://doi.org/10.1080/07391102.1994.10508031
- Randic, M. (2004) 2-D Graphical representation of proteins based on virtual genetic code. SAR QSAR Environ. Res. 15, 147-157 https://doi.org/10.1080/10629360410001697744
- Randic, M., Zupan, J. and Balaban, A. T. (2004) Unique graphical representation of protein sequences based on nucleotide triplet codons. Chem. Phys. Lett. 397, 247-252 https://doi.org/10.1016/j.cplett.2004.08.118
- Randic, M., Balaban, A. T., Novic, M., Zaloznik, A. and Pisanski, T. (2005) A novel graphical representation of proteins. Period. Boil. 107, 403-414
- Randic, M., Butina, D. and Zupan, J. (2006) Novel 2-D graphical representation of proteins. Chem. Phys. Lett. 419, 528-532 https://doi.org/10.1016/j.cplett.2005.11.091
- Randic, M., Zupan, J. and Vikic-Topic, D. (2007) On representation of proteins by star-like graphs. J. Mol. Graph. Model. 26, 290-305 https://doi.org/10.1016/j.jmgm.2006.12.006
- Lau, S. K. P., Wo, P. C. Y. and Li, K. S. M., et al. (2005) Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. PNAS 102, 14040-14045 https://doi.org/10.1073/pnas.0506735102
- Marra, M. A., Jones, S. J. M. and Astell, C. R., et al. (2003) The genome sequence of the sars-associated coronavirus. Science 300, 1399 https://doi.org/10.1126/science.1085953
- Poon, L. L., Chu, D. K., Chan, K. H., Wong, O. K., Ellis T. M., Leung, Y. H., Lau, S. K., Woo, P. C., Suen, K. Y., Yuen, K. Y., Guan, Y. and Peiris, J. S. (2005) Identification of a novel coronavirus in bats. J. Virol. 79, 2001-2009 https://doi.org/10.1128/JVI.79.4.2001-2009.2005
- Rota, P. A., Oberste, M. S. and Monroe, S. S., et al. (2003) Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300, 1394 https://doi.org/10.1126/science.1085952
- Satija, N. and Lal, S. (2007) The Molecular Biology of SARS Coronavirus. Ann. N.Y. Acad. Sci. 1102, 26-38 https://doi.org/10.1196/annals.1408.002
- Gao, L., Qi, J., Wei, H. B., Sun, Y. G. and Hao, B. L. (2003) Molecular phylogeny of coronaviruses including human SARS-CoV. Chin. Sci. Bull. 48, 1170-1174 https://doi.org/10.1360/03wc0254
- Gorbalenya, A. E., Snijder, E. J. and Spaan, W. J. M. (2004) Severe acute respiratory syndrome coronavirus phylogeny: toward consensus. J. Virol. 78, 7863-7866 https://doi.org/10.1128/JVI.78.15.7863-7866.2004
- Ksiazek, T. G., Zaki, S. R. and Urbani, C., et al. (2003) A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1953-1966 https://doi.org/10.1056/NEJMoa030781
- Skowronski, D. M., Astell, C., Brunham, R. C., Low, D. E., Petric, M., Roper, R.L., Talbot, P. J., Tam, T. and Babiuk, L. (2005) Severe acute respiratory syndrome (SARS): a year in review. Annu. Rev. Med. 56, 357-381 https://doi.org/10.1146/annurev.med.56.091103.134135
- Snijder, E. J., Bredenbeek, P. J. and Dobbe, J. C., et al. (2003) Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 331, 991-1004 https://doi.org/10.1016/S0022-2836(03)00865-9
- Zheng, W. X., Chen, L. L., Ou, H. Y., Gao, F. and Zhang, C. T. (2005) Coronavirus phylogeny based on a geometric approach. Mol. Phylogenet. Evol. 36, 224-232 https://doi.org/10.1016/j.ympev.2005.03.030
- Chinese SARS Molecular Epidemiology Consortium. (2004) Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303, 1666-1669 https://doi.org/10.1126/science.1092002
- Shi, Z. and Hu, Z. (2007) A review of studies on animal reservoirs of the SARS coronavirus. Virus Res. in press
- Song, H. D., Tu, C. C. and Zhang, G. W., et al. (2005) Crosshost evolution of severe acute respiratory syndrome coronavirus in palm civet and human. PNAS 102, 2430-2435 https://doi.org/10.1073/pnas.0409608102
- Wang, J. and Wang, W. (1999) A computational approach to simplifying the protein folding problem. Nat. Struct. Biol. 6, 1033-1038 https://doi.org/10.1038/14918
- Wang, J. and Wang, W. (2000) Modeling study on the validity of a possibly simplified representation of proteins. Phys. Rev. E. 61, 6981-6986 https://doi.org/10.1103/PhysRevE.61.6981
- Riddle, D. S., Santiago, J. V., Brayhall, S. T., Doshi, N., Grantcharova, V. P., Yi, Q. and Baker, D. (1997) Functional rapidly folding proteins from simplified amino acid sequences. Nat. Struct. Biol. 4, 805-809 https://doi.org/10.1038/nsb1097-805
- Jaklic, G., Pisanski, T. and Randic, M. (2006) Characterization of Complex Biological Systems by Matrix Invariants. J. Comput. Biol. 13, 1558-1564 https://doi.org/10.1089/cmb.2006.13.1558
- Li, C. and Wang, J. (2005) New Invariant of DNA Sequences. J. Chem. Inf. Model. 45, 115-120 https://doi.org/10.1021/ci049874l
- Randic, M., Zupan, J., Novic, M., Gute, B. D. and Basak, S. C. (2002) Novel matrix invariants for characterization of changes of proteomics maps. SAR QSAR Environ. Res. 13, 689-703 https://doi.org/10.1080/1062936021000043436
Cited by
- Protein sequence analysis based on hydropathy profile of amino acids vol.13, pp.2, 2012, https://doi.org/10.1631/jzus.B1100052
- New method for comparing DNA primary sequences based on a discrimination measure vol.266, pp.4, 2010, https://doi.org/10.1016/j.jtbi.2010.07.040
- A novel descriptor of protein sequences and its application vol.347, 2014, https://doi.org/10.1016/j.jtbi.2014.01.001
- A 2D graphical representation of protein sequence and its numerical characterization vol.476, pp.4-6, 2009, https://doi.org/10.1016/j.cplett.2009.06.017
- An alignment-free method to find similarity among protein sequences via the general form of Chou’s pseudo amino acid composition vol.24, pp.7, 2013, https://doi.org/10.1080/1062936X.2013.773378
- Numerical Characterization of Protein Sequences Based on the Generalized Chou’s Pseudo Amino Acid Composition vol.6, pp.12, 2016, https://doi.org/10.3390/app6120406
- tomocomd-camps and protein bilinear indices - novel bio-macromolecular descriptors for protein research: I. Predicting protein stability effects of a complete set of alanine substitutions in the Arc repressor vol.277, pp.15, 2010, https://doi.org/10.1111/j.1742-4658.2010.07711.x
- Mathematical Characterization of Protein Sequences Using Patterns as Chemical Group Combinations of Amino Acids vol.11, pp.12, 2016, https://doi.org/10.1371/journal.pone.0167651
- The graphical representation of protein sequences based on the physicochemical properties and its applications vol.31, pp.11, 2010, https://doi.org/10.1002/jcc.21501
- WITHDRAWN: A Novel Way of Comparing Protein Sequences Represented Under Physio-Chemical Properties of their Amino Acids 2017, https://doi.org/10.1016/j.compbiolchem.2017.04.001
- Condensed Matrix Descriptor for Protein Sequence Comparison vol.04, pp.01, 2016, https://doi.org/10.4236/ijamsc.2016.41001
- Use of FFT in Protein Sequence Comparison under Their Binary Representations vol.06, pp.02, 2016, https://doi.org/10.4236/cmb.2016.62003
- A novel 2D graphical representation of protein sequence based on individual amino acid vol.111, pp.12, 2011, https://doi.org/10.1002/qua.22709
- Alignment-free Comparison of Protein Sequences Based on Reduced Amino Acid Alphabets vol.26, pp.6, 2009, https://doi.org/10.1080/07391102.2009.10507288
- 20D-dynamic representation of protein sequences vol.107, pp.1, 2016, https://doi.org/10.1016/j.ygeno.2015.12.003
- A new model of amino acids evolution, evolution index of amino acids and its application in graphical representation of protein sequences vol.497, pp.4-6, 2010, https://doi.org/10.1016/j.cplett.2010.08.010
- Chemical property based sequence characterization of PpcA and its homolog proteins PpcB-E: A mathematical approach vol.12, pp.3, 2017, https://doi.org/10.1371/journal.pone.0175031
- Primary structure similarity analysis of proteins sequences by a new graphical representation vol.25, pp.10, 2014, https://doi.org/10.1080/1062936X.2014.955055
- Alignment-free similarity analysis for protein sequences based on fuzzy integral vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-39477-8