A Study of a Knowledge Inference Algorithm using an Association Mining Method based on Ontologies

온톨로지 기반에서 연관 마이닝 방법을 이용한 지식 추론 알고리즘 연구

  • Published : 2008.11.30

Abstract

Researches of current information searching focus on providing personalized results as well as matching needed queries in an enormous amount of information. This paper aims at discovering hidden knowledge to provide personalized and inferred search results based on the ontology with categorized concepts and relations among data. The current searching occasionally presents too much redundant information or offers no matching results from large volumes of data. To lessen this disadvantages in the information searching, we propose an inference algorithm that supports associated and inferred searching through the Jess engine based on the OWL ontology constraints and knowledge expressed by SWRL with association rules. After constructing the personalized preference ontology for domains such as restaurants, gas stations, bakeries, and so on, it shows that new knowledge information generated from the ontology and the rules is provided with an example of the domain of gas stations.

정보 검색에 대한 연구는 방대한 데이터에서 원하는 검색 정보를 제공할 뿐 만 아니라 개인의 취향에 따른 맞춤 검색 및 추론된 지식을 제공하는 데 초점을 두고 있다. 본 논문의 목적은 데이터를 개념화하여 분류 및 정의할 수 있는 온톨로지 구조를 기반으로 숨어있는 지식을 발견하여 개인 맞춤 검색을 제공하는 추론 알고리즘에 대해 연구하는 것이다. 현재의 검색에서는 방대한 데이터에서 너무 많은 검색 결과를 제공 하거나 검색 결과를 제공하지 못하는 경우도 발생하고 여다. 이러한 정보 검색의 단점을 보완하기 위해 OWL 온톨로지 제약조건과 연관 마이닝 방법으로 추론된 연관 지식을 SWRL 추론 언어로 표현하여 Jess 엔진을 통한 새로운 지식을 발견하여 효율적인 검색을 지원하는 알고리즘을 제안한다. 식당, 주유소, 제과점 등의 도메인에 따른 개인별 선호 온톨로지를 구축하고, 주유소 개인 선호 데이터를 예제로 하여 연관 및 온톨리지 기반에서 정보를 검색할 때, 연관 및 추론 정보를 제공함을 보여준다.

Keywords