지능형 영상 감시 시스템에서의 은닉 마르코프 모델을 이용한 특이 행동 인식 알고리즘

A Recognition Algorithm of Suspicious Human Behaviors using Hidden Markov Models in an Intelligent Surveillance System

  • 발행 : 2008.11.30

초록

본 논문은 은닉 마르코프 모델을 사용하여 사람의 특정한 행동을 인식하여 사용자에게 알려주는 지능형 영상 감시 시스템을 제안한다. 본 방법에는 카메라를 통해 입력된 영상에서 사람 영역을 찾은 후 발 영역만을 추출하여 특징이 되는 관측열을 생성한다 특징 영역은 입력 영상의 각 프레임을 16개의 영역으로 나누어 발바닥이 위치한 곳의 코드를 읽어 사용하고, 인식하고자 하는 패턴 행동들에 대해서는 각각의 관측열을 구하고 HMM의 Baum-Welch 알고리즘을 사용하여 학습한다. 인식에는 전향 알고리즘을 사용하여 입력된 행동과 학습된 행동을 확률적으로 비교하여 영상 내의 행동이 어떤 패턴 행동인지를 결정하여 출력한다. 제시된 방법은 복도에서 사람의 특정 행동을 인식하는데 성공적으로 적용될 수 있음을 실험을 통해 확인했다.

This paper proposes an intelligent surveillance system to recognize suspicious patterns of the human behavior by using the Hidden Markov Model. First, the method finds foot area of the human by motion detection algorithm from image sequence of the surveillance camera. Then, these foot locus form observation series of features to learn the HMM. The feature that is position of the human foot is changed to each code that corresponds to a specific label among 16 local partitions of image region. Therefore, specific moving patterns formed by the foot locus are the series of the label numbers. The Baum-Welch algorithm of the HMM learns each suspicious and specific pattern to classify the human behaviors. To recognize the inputted human behavior pattern in a test image, the probabilistic comparison between the learned pattern of the HMM and foot series to be tested decides the categorization of the test pattern. The experimental results show that the method can be applied to detect a suspicious person prowling in corridor.

키워드