Exposing Zebrafish to Silver Nanoparticles during Caudal Fin Regeneration Disrupts Caudal Fin Growth and p53 Signaling

  • Yeo, Min-Kyeong (Department of Environmental Science and Engineering, KyungHee University) ;
  • Pak, Se-Wha (Department of Environmental Science and Engineering, KyungHee University)
  • Published : 2008.12.31

Abstract

Zebrafish were exposed to commercial silver nanoparticles (${\sim}$10-20 nm) at 0.4 and 4 ppm during cadual fin regeneration. The silver was in the $Ag^+$ ionic form. Fin regeneration was slow in the group exposed to the lower concentration. The cadual fin, gill, and muscle were assayed after 48 hours and subjected to histological analysis. In all tissues sampled, fish exposed to nanoparticles exhibited infiltration, large mitochondria with empty matrices, and accumulation of nano-sized silver in blood vessels. The results suggested mitochondrial damage and induction of inflammation. Microarray analysis of RNA from young zebrafish (52 hours post-fertilization) that were exposed to nanometer-sized silver particles, showed alteration in expression of the p53 gene pathway related to apoptosis. Gene expression changes in the nanoparticle-treated zebrafish led to phenotypic changes, reflecting increased apoptosis.

Keywords

References

  1. Lee, H. J., Yeo, S. Y. & Jeong, S. H. Antibacterialeffect of nanosized silver colloidal solution on textile fabrics. J Mater Sci 38:2199-2204 (2003) https://doi.org/10.1023/A:1023736416361
  2. Harper, T. Nano Korea. Available: http://nanotechweb.org/cws/article/articles/18190 (2003)
  3. Hamouda, T. et al. Index to volume 180. J Infect D 180:2096-2126 (1999) https://doi.org/10.1086/524780
  4. Sondi, I. & Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interf Sci 275:177-182 (2004) https://doi.org/10.1016/j.jcis.2004.02.012
  5. Yeo, M. K. & Kang, M. S. Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. Bull Korean Chem Soc 29(6):1179-1184 (2008) https://doi.org/10.5012/bkcs.2008.29.6.1179
  6. Johnson, S. L. & Weston, J. A. Temperature-sensitive mutations that cause stage-specific defects in zebrafish fin regeneration. Genetics 141:1583-1595 (1995)
  7. Becker, T. et al. Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol 377:577-595 (1997) https://doi.org/10.1002/(SICI)1096-9861(19970127)377:4<577::AID-CNE8>3.0.CO;2-#
  8. Poss, K. D., Wilson, L. G. & Keating, M. T. Heart regeneration in zebrafish. Science 298:2188-2190 (2002) https://doi.org/10.1126/science.1077857
  9. Ferretti, P. & Geraudie, J. Cellular and Molecular Basis of Regeneration: From Invertebrates to Humans. New York, Wiley Press (1998)
  10. Johnson, S. L. & Weston, J. A. Temperature-sensitive mutations that cause stage-specific defects in zebrafish fin regeneration. Genetics 141:1583-1595 (1995)
  11. Berger, T. J. et al. Electrically generated silver ions: quantitative effects on bacterial and mammalian cells. Antimicrob Agents Ch 9:357-358 (1976) https://doi.org/10.1128/AAC.9.2.357
  12. Moller, W. et al. Ultrafine particles cause cytoskeletal dysfunctions in macrophages. Toxicol Appl Pharm 182:197-207 (2002) https://doi.org/10.1006/taap.2002.9430
  13. Lambert, A. L. et al. Ultrafine carbon black particles enhance respiratory syncytial virus-induced airway reactivity, pulmonary inflammation, and chemokine expression. Soc Toxicol 72:339-346 (2003) https://doi.org/10.1093/toxsci/kfg032
  14. Renwick, L. C., Donaldson, K. & Clouter, A. Impairment of alveolar macrophage phagocytosis by ultrafine partic. Toxicol Appl Pharm 172:119-127 (2001) https://doi.org/10.1006/taap.2001.9128
  15. Brooker, R. J. & Slayman, C. W. Effects of $Mg^{2+}$ ions on the plasma membrane [H+]-ATPase of Neurospora crassa. II. Kinetic studies J Biol Chem 258:8833-8838 (1983)
  16. Black, C. B., Huang, H. W. & Cowan, J. A. Biological coordination chemistry of magnesium, sodium, and potassium ions. Protein and nucleotide binding sites. Coord Chem Rev 136:165-202 (1994) https://doi.org/10.1016/0010-8545(94)80068-5
  17. Hossain, Z. & Huq, F. Studies on the interaction between $Ag^+$ and DNA J Inorg Biochem 91:398-404 (2002) https://doi.org/10.1016/S0162-0134(02)00454-3
  18. Xia, T. et al. Quinones and aromatic chemicals compounds inparticulate matter induce mitochondrial dysfunction: implications for ultrafine particle toxicity. Environ Health Perspect 112:1347-1358 (2004) https://doi.org/10.1289/ehp.7167
  19. Foster, K. A. et al. Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neuro degeneratation. Prog Neurobiol 79:136-171 (2006) https://doi.org/10.1016/j.pneurobio.2006.07.001
  20. Jezek, P. & Hlavata, L. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 37:2478-2503 (2005) https://doi.org/10.1016/j.biocel.2005.05.013
  21. Valko, M. et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1-40 (2006) https://doi.org/10.1016/j.cbi.2005.12.009
  22. Nathan, A. W. & Chris, M. W. Bioaccumulation and distribution of silver in four marine teleosts and two marine elasmobranchs: influence of exposure duration, concentration, and salinity. Aquatic Toxicology 49(1,2):111-129 (2000) https://doi.org/10.1016/S0166-445X(99)00063-6
  23. Fletcher, T. C. Modulation of nonspecific host defenses in fish. Vet Immunol Immunopathol 12:59-67 (1986) https://doi.org/10.1016/0165-2427(86)90110-8
  24. Low, K. W. & Sin, Y. M. Effects of mercuric chloride and sodium selenite on some immune responses of blue gourami, Trichogaster trichopterus (Pallus). Sci Total Environ 214:153-164 (1998) https://doi.org/10.1016/S0048-9697(98)00061-8
  25. Chen, X. et al. Mitochondria-dependent apoptosis induced by nanoscale hydroxyapatite in human gastric cancer SGC-7901 cells. Biol Pharm Bull 30:128-132 (2007) https://doi.org/10.1248/bpb.30.128
  26. Westerfield, M. The Zebrafish Book. Oregon; University of Oregon Press (1993)
  27. USEPA, Method 3051, micro-wave assisted acid digestion of sediments, sludges, soils and oils, Test methods for evaluating solid waste, physical/chemical methods, third ed., U.S. Environmental Protection Agency, U.S; Office of Solid Waste (1994)