염화아연으로 표면개질된 입상활성탄의 질산성질소 흡착속도의 모델링 연구

Modeling of the Nitrate Adsorption Kinetics onto $ZnCl_2$ Treated Granular Activated Carbon

  • Ji, Min-Kyu (Department of Environmental Engineering, Yonsei University) ;
  • Jung, Woo-Sik (Department of Environmental Engineering, Yonsei University) ;
  • Bhatnagar, Amit (Department of Environmental Engineering, Yonsei University) ;
  • Jeon, Byong-Hun (Department of Environmental Engineering, Yonsei University)
  • 발행 : 2008.06.30

초록

염화아연($ZnCl_2$)으로 표면개질된 코코넛 입상활성탄(Granular Activated Carbon, GAC)의 질산성질소 제거제로서의 적용가능성을 알아보기 위해 두 가지 질산성질소 농도(25 mg/L, 50 mg/L) 조건에서 수중에서의 질산성질소 흡착능력을 평가하였다. 표면개질된 코코넛 입상활성탄의 질산성질소 흡착은 반응초기에 빠르게 진행되어 10분 이내에 흡착율이 50%에 이르렀고 흡착평형에 소요된 시간은 1시간 이내였다. 염화아연으로 표면개질된 코코넛 입상활성탄의 질산성질소 흡착 원리를 조사하기 위해 네 가지 속도 모델들(유사 일차 모델, 유사 이차 모델, Weber & Morris의 입자내 확산 모델, 그리고 Bangham의 공극 확산 모델)을 각 모델의 속도 상수(k)에 따라 적용하였다. 그 결과, 본 연구의 흡착속도는 공극 확산 단계에 의하여 결정되는 것으로 사료되며 유사 이차 모델을 따르는 것으로 나타났다.

Nitrate adsorption from aqueous solutions onto zinc chloride ($ZnCl_2$) treated coconut Granular Activated Carbon (GAC) was studied in a batch mode at two different initial nitrate concentrations (25 and 50 mg/L). The rate of nitrate uptake on prepared media was fast in the beginning, and 50% of adsorption was occurred within 10 min. The adsorption equilibrium was achieved within one hour. The mechanism of adsorption of nitrate on $ZnCl_2$ treated coconut GAC was investigated using four simplified kinetic models : the rate parameters were calculated for each model. The kinetic analysis indicated that pseudo-second-order kinetic with pore-diffusion-controlled was the best correlation of the experimental kinetic data in the present adsorption study.

키워드

참고문헌

  1. 국제인구행동연구소(PAI) : Sustaining Water(Population and the Future Renewable Water Suppies), 1993
  2. 김탁수, 이용미, 김문선, 김성연, 신해철, 최경호, 정문호, 2004, 일부 농촌지역의 오염원 현황과 먹는물 수질에 관한 조사연구, 한국환경위생학회지, 30(2), 98-103
  3. 연경호, 문승현, 1999, 전기투석과 전기탈이온법에 의한 음용수에서의 질산성질소 제거, 대한환경공학회, 21(1), 87-99
  4. 연경호, 이승학, 이관용, 박용민, 강상윤, 이재원, 최용수, 이상협, 2007, 메조기공 실리카에 부착된 영가철을 이용한 질산성질소의 환원, 상하수도학회지, 21(1), 139-147
  5. 이용주, 민지희, 김종호, 김한승, 2006, 이온교환수지와 나노여과 막을 이용한 질산성질소의 제거특성 비교, 대한상하수도학회한국물환경학회 공동추계학술발표대회 논문집, 2006, pp. 171-176
  6. 지민규, 최양훈, 정우식, 이상훈, 김선준, 민부기, 아밋바트나가, 김성헌, 정형근, 전병훈, 강준원, 2007, 염화아연으로 표면 개질된 입상활성탄의 질산성질소 흡착연구, 한국지구시스템공학회지, 44(6), 492-499
  7. 환경부, 2007, 2006년 지하수 수질측정망 운영결과
  8. 환경부, 환경백서, 452-458, 2003
  9. Aharoni, C. and Ungarish, M., 1977, Kinetics of activated chemisorption Part 2.- Theoritical models, J. Chem. Soc. Faraday I., 73, 456-464 https://doi.org/10.1039/f19777300456
  10. Chiu, H.-F., Tsai, S.-S., and Yang, C.Y., 2007, Nitrate in drinking water and risk of death from bladder cancer: An ecological case-control study in Taiwan, J. Toxicol. Environ. Hlth., Part A, 70, 1000-1004 https://doi.org/10.1080/15287390601171801
  11. Dore, M., Simon, Ph., Deguin, A., and Victot, J., 1986, Removal of nitrate in drinking water by ion exchange-Impact on the chemical quality of treated water, Water Res., 20, 221-232 https://doi.org/10.1016/0043-1354(86)90012-6
  12. Haribabu, E., Upadhya, Y.D., and Upadhyay, S.N., 1993, Removal of phenols from effluents by fly ash, Int. J. Environ. Studies, 43, 169-176 https://doi.org/10.1080/00207239308710824
  13. Ho, Y.S. and McKay, G., 1999, The sorption of lead(II) ions on peat, Water Res., 33, 578-584 https://doi.org/10.1016/S0043-1354(98)00207-3
  14. Ho, Y.S., Ng, J.C.Y. and McKay, G., 2001a, Removal of lead(II) from effluents by sorption on peat using second-order kinetics, Sep. Sci. Technol., 36, 241-261 https://doi.org/10.1081/SS-100001077
  15. Ho, Y.S. and Chiang, C.C., 2001b, Sorption studies of acid dye by mixed sorbents, Adsorption, 7, 139-147 https://doi.org/10.1023/A:1011652224816
  16. Ho, Y.S. and McKay, G., 1999, Pseudo-second order model for sorption processes, Process Biochem., 34, 451-465 https://doi.org/10.1016/S0032-9592(98)00112-5
  17. Huang, Y.H. and Zhang, T.C., 2004, Effects of low pH on nitrate reduction by iron powder, Water Res., 38, 2631-2642 https://doi.org/10.1016/j.watres.2004.03.015
  18. Kumar, M. and Chakraborty, S., 2006, Chemical denitrification of water by zero-valent magnesium powder, J. Hazard. Mater., B135, 112-121
  19. Lagergren, S., 1898, About the theory of so-called adsorption of soluble substances, K. Svenska Vetenskapsakad Handl., 24, 1-39
  20. Mohanty, K., Jha, M., Meikap, B.C., and Biswas, M.N., 2005, Preparation and characterization of activated carbons from terminalia arjuna nut with zinc chloride activation for the removal of phenol from wastewater, Ind. Eng. Chem. Res., 44, 4128-4138 https://doi.org/10.1021/ie050162+
  21. Mohanty, K., Jha, M., Meikap, B.C., and Biswas, M.N., 2005, Removal of chromium(VI) from dilute aqueous solutions by activated carbon developed feom Terminalia arjuna nuts activated with zinc chloride, Chem. Engg. Sci., 60, 3049-3059 https://doi.org/10.1016/j.ces.2004.12.049
  22. Namasivayam, C. and Sangeetha, D., 2005, Removal and recovery of nitrate from water by $ZnCl_2$ activated carbon from coir pith, an agricultural solid waste, Ind. J. Chem. Technol., 12, 513-521
  23. Ozturk, N. and Bekta , T.E., 2004, Nitrate removal from aqueous solution by adsorption onto various materials, J. Hazardous Mat., B112, 155-162
  24. Panday, K.K., Prasad, G., and Singh, V.N., 1985, Copper(II) removal from aqueous solutions by fly ash, Water Res., 19, 869-873 https://doi.org/10.1016/0043-1354(85)90145-9
  25. Pintar, A., Batista J., and Levec, J., 2001, Catalytic denitrification: direct and indirect removal of nitrates from potable water, Catalysis Today, 66, 503-510 https://doi.org/10.1016/S0920-5861(00)00622-2
  26. Periasamy, K. and Namasivayam, C., 1994, Process development for removal and recovery of cadmium from wastewater by a low-cost adsorbent: Adsorption rates and equilibrium studies, Ind. Eng. Chem. Res., 33, 317-320 https://doi.org/10.1021/ie00026a022
  27. Schoeman, J.J. and Steyn, A., 2003, Nitrate removal with reverse osmosis in a rural area in South Africa, Desalination, 155, 15-26 https://doi.org/10.1016/S0011-9164(03)00235-2
  28. Soares, M.I.M., 2000, Biological denitrification of groundwater, Water. Air. Soil Pollut., 123, 183-193 https://doi.org/10.1023/A:1005242600186
  29. Tutem, E., Apak, R., and Unal, C.F., 1998, Adsorptive removal of chlorophenols from water by bituminous shale, Water Res., 32, 2315-2324 https://doi.org/10.1016/S0043-1354(97)00476-4
  30. US Environmental Protection Agency, 2000, Drinking water standards and health advisories, US Environmental Protection Agency, Office of Water, 822-B-00-001
  31. Weber Jr., W.J. and Morris, J.C., 1963, Kinetics of adsorption on carbon from solution, J. Sanit. Engg. Div., ASCE 89 (SA2), pp. 31-59