해바라기(Helianthus annuss L.)와 강낭콩(Phaseolos vulgaris var.)을 이용한 뿌리여과법(rhizofiltration)의 세슘 (cesiun) 제거

Cesium Removal of the Rhizofiltration Using Sunflowers (Helianthus annuss L.) and Beans (Phaseolos vulgaris var.)

  • 양민준 (부경대학교 환경지질과학과) ;
  • 이민희 (부경대학교 환경지질과학과)
  • Yang, Min-June (Department of Environmental Geosciences, Pukyong National University) ;
  • Lee, Min-Hee (Department of Environmental Geosciences, Pukyong National University)
  • 발행 : 2008.12.28

초록

대표적 오염 방사능 핵종인 세슘(cesium)으로 오염된 수계를 정화하기위하여 해바라기(Sunflower; Helianthus annuus L.)와 강낭콩(Bean; Phaseolus vulgaris var.)을 이용한 뿌리여과(rhizofiltration) 실내 실험을 실시하였다. 해바라기의 경우 뿌리여 과실험 24시간 내에 세슘의 98%를 제거하였으며, 강낭콩은 99%의 제거율을 나타내어 친환경적이며 녹색 정화방법인 뿌리여과법이 세슘으로 오염된 수계 정화에 매우 효과적으로 적용 할 수 있음을 제시하였다. 수용액의 pH에 따른 뿌리여과법의 세슘 제거 실험 결과, 두 식물 모두에서 오염수의 pH가 $5{\sim}9$인 경우 98%이상의 제거효율을 나타내었다. 뿌리여과법 실험 후 식물에 농축된 세슘량을 부위별로 측정한 결과, 수용액으로부터 식물로 이동한 총 세슘의 80% 이상이 뿌리에 농축되어 있는 것으로 나타났다. 이러한 결과는 대규모 오염 현장에서 뿌리여과법을 적용 시, 농축이 심한 뿌리 부분만을 후 처리함으로써 비용과 시간을 절감할 수 있음을 의미한다. 뿌리여과법 적용 후 식물 뿌리 표면의 SEM이미지와 EDS성분 분석 결과, 수용액 내 세슘은 먼저 뿌리 표면에 이온상으로 흡착한 후 서서히 뿌리 내부로 흡수되는 것으로 판단되었다.

Rhizofiltration for cesium uptake by sunflowers (Helianthus annuus L.) and beans (Phaseolus vulgaris var.) was investigated for groundwater contamination. The cesium removal by sunflowers was greater than 98% of the total cesium in solution, and the uptake by beans was also greater than 99% within 24 hours of the rhizofiltration, showing that the rhizofiltration has a great capability to remove cesium from the contaminated water system. Experiments at various pH of solution indicated that a solution of pH $5{\sim}9$ yielded very high cesium accumulation in two plants. From the results of the analysis for cesium accumulation in plant parts, about 80% of cesium transferred into the plant from solution was accumulated in the root part and less than 20% of cesium existed in the shoot part (including leaves). Results suggest that only the roots of the fully grown plant used for rhizofiltration should be disposed or post-treated and thus the cost and time to treat massive amounts of grown plants could be dramatically reduced when sunflower and bean are used in the real field. The results of SEM and EDS analyses indicated that the most of cesium were accumulated in the root surface as a ionic phase rather than a soil precipitation phase.

키워드

참고문헌

  1. Avery, S.V. (1996) Fate of cesium in the environment: Distribution between the abiotic and biotic components of aquatic and terrestrial ecosystems. J. Environ. Radioact., v. 30(2), p. 139-171 https://doi.org/10.1016/0265-931X(96)89276-9
  2. Cordfunke, E.H.P. and Konnings, R.J.M. (1993) The release of fission products from degraded UO2 fuel: Thermochemical aspect. J. of Nuclear Materials, v. 201, p. 57-69 https://doi.org/10.1016/0022-3115(93)90159-V
  3. Chou, F.I., Chung, H.P., Teng, S.P., and Sheu, S.T. (2005) Screening plant species native to Taiwan for remediation of 137Cs-contaminate soil and the effects of K addition and soil amendment on the transfer of 137Cs from soil to plants. J. Environ. Radioact., v. 80, p. 175-181 https://doi.org/10.1016/j.jenvrad.2004.10.002
  4. Doyle, D. A., Cabral, J. M., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T., and MacKinnon, R. (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science, v. 280, p. 69-77 https://doi.org/10.1126/science.280.5360.69
  5. Dushenkov, V., Kumar, P., Motto, H., and Raskin, I. (1995) Rhizofiltration: The use of plants to remove heavy metals from aqueous streams, Environ. Sci. Technol., v. 29, p. 1239-1245 https://doi.org/10.1021/es00005a015
  6. Dushenkov, S., Vasudev, D., Kapulnik, Y., Gleba, D., Fleisher, D., Ting, K. C., and Ensley, B. (1997) Removal of Uranium from Water Using Terrestrial Plants. Environ. Sci. Technol., v. 31, p. 3468-3474 https://doi.org/10.1021/es970220l
  7. Ebbs, S., Brady, D., Norvell, W., and Kochian, L. (2001) Uranium speciation, Plant uptakes, and Phytoremediation, Practice periodical of hazardous, toxic, and radioactive waste management. v. 5, p. 130-135 https://doi.org/10.1061/(ASCE)1090-025X(2001)5:3(130)
  8. Imoto, S. (1986) Chemical state of fission products in irradiated UO2. J. of Nuclear Materials, v. 140, p. 19-27 https://doi.org/10.1016/0022-3115(86)90192-3
  9. Jeong, G.-H., Lee, K.-W., Kim, K.-J., and Park, H.-H. (1994) The removal characteristics of cesium ion by chemical/ultrafiltration combination process. Energy Engg. J., v. 3(1), p. 70-76
  10. Minouflet, M., Ayrault, S., Badot, P.-M., Cotelle, S., and Ferard, J.-F. (2005) Assessment of the genotoxicity of 137Cs radiation using Vicia-micronucleus, Tradescantiamicronucleus, and Tradescantia-stamen-hair mutation bioassays. J. Environ. Radioact. v. 81, p. 143-153 https://doi.org/10.1016/j.jenvrad.2005.01.003
  11. NIAST (2000) Methods of soil and plant analysis, National Institute of Agricultural Science and Technology, Suwon, Korea
  12. Park, G.I., Cho, K.H., Lee, J.W., and Park, J.J. (2007) Cesium release behavior during the thermal threatment of high burn-up spent PWR fuel. J. of the Korean Radioactive Waste Society, v. 5(1), p. 53-64
  13. Raskin, I. and Ensley, B. D. (2000) Phytoremediation of Toxic Metals, John Willey & Sons, Inc, pp. 285
  14. Singh, S., Thorat, V., Kaushik, C.P., Raj, K., Eapen, S., and D'ÂSouza, S.F. (2008) Potential of Chromolaena odorata for phytoremediation of 137Cs from solution and low level nuclear waste. J. Hazard. Mater., doi:101016/ j.jhazmat.2008.05.097 (In press)
  15. Walker, C.T., Bagger, C., and Mogensen, M. (1996) Observation on the release of cesium from UO2 fuel. J. of Nuclear Materials, v. 240, p. 32-42 https://doi.org/10.1016/S0022-3115(96)00477-1
  16. Walle, E., Perrot, P., Foct, J., and Praise, M. (2005) Evaluation of the Cs-Mo-I-O and Cs-U-I-O diagrams and determination of iodine and oxygen partial pressure in spent nuclear fuel rods. J. of Physics and Chemistry of Solid, v. 66, p. 655-664 https://doi.org/10.1016/j.jpcs.2004.06.078
  17. Watt, N.R., Willey, N.J., Hall, S.C., and Cobb, A. (2002) Phytoremediation of 137Cs: The effect of soil 137Cs concentration on 137Cs uptake by Beta vulgaris. Acta Biotechnolo., v. 22, p. 183-188 https://doi.org/10.1002/1521-3846(200205)22:1/2<183::AID-ABIO183>3.0.CO;2-K
  18. Whicker, F.W. (1997) Impacts of large radionuclide releases on plant and animal populations. In Ciba Foundation, ed, Health Impacts of Large Releases of Radionuclides. John Wiley, London, UK, p. 74-93
  19. White, P. J., Swarup, K., Escobar-Gutie'rez, A. J., Bowen, H. C., Willey, N. J., and Broadley, M. R. (2003) Selecting plants to minimize radiocesium in the food chain. Plant and Soil, v. 249, p. 177-186 https://doi.org/10.1023/A:1022593307224
  20. Yang, M. and Lee, M. (2008) Rhizofiltration process with Helianthus annuss L., Phaseolus vulgaris var., and Brassica juncea (L.) Czern. to remediate uranium contaminated groundwater. J. Kor. Soc. Soil & Groundwater Env., v. 13(4), p. 30-39
  21. Yang, M. and Lee, M (2009) Rhizofiltration using Sunflower (Helianthus annuss L.) and Bean (Phaseolus vulgaris var. humilis.) to remediate uranium contaminated groundwater. J. Hazord. Mater. (Submitted and in review)