DOI QR코드

DOI QR Code

Anti-cancer Activity of Flavonoids from Aceriphyllum rossii

돌단풍(Aceriphyllum rossii)에서 분리한 플라보노이드의 항암활성

  • Ahn, Eun-Mi (Department of Herbal Foodceutical Science, Daegu Haany University) ;
  • Han, Jae-Taek (Chemport Inc.) ;
  • Kwon, Byoung-Mog (Korea Research Institute of Bioscience and Biotechnology, KIST) ;
  • Kim, Sung-Hoon (College of Oriental Medicine, KyungHee University) ;
  • Baek, Nam-In (Institute of Life Science & Resources, and Plant Metabolism Research Center, KyungHee University)
  • 안은미 (대구한의대학교 한방식품약리학과) ;
  • 한재택 ((주)켐포트) ;
  • 권병목 (한국생명공학연구원) ;
  • 김성훈 (경희대학교 동서의학대학원) ;
  • 백남인 (경희대학교 생명자원과학연구원 및 식물대사연구센터)
  • Published : 2008.12.31

Abstract

The methanol extract from the aerial parts of Aceriphyllum rossii was fractionated into ethyl acetate, n-BuOH and $H_2O$ layers through solvent fractionation. Repeated silica gel column chromatography of EtOAc and n-BuOH layers afforded five flavonol glycosides. They were identified as astragalin (1), kaempferol 3-O-${\alpha}$-L-rhamnopyranosyl (1${\rightarrow}$6)-${\beta}$-D-glucopyranoside (2), rutin (3), kaempferol 3-O-${\alpha}$-L-rhamnopyranosyl (1${\rightarrow}$4)-${\alpha}$-L-rhamnopyranosyl 1${\rightarrow}$6)-${\beta}$-D-glucopyranoside (4), and quercetin 3-O-${\alpha}$-L-rhamnopyranosyl (1${\rightarrow}$4)-${\alpha}$-L-rhamnopyranosyl (1${\rightarrow}$6)-${\beta}$-D-glucopyranoside (5) on the basis of spectroscopic data. All of them showed an inhibition in farnesyl protein tranferase (FPTase) activity, and rutin (3) inhibited the growth of rat H-ras cell and the cell migration of human umbilical vein endothelial cells (HUVECs).

돌단풍 지상부를 80% MeOH로 추출하고, 얻어진 추출물을 EtOAc, n-BuOH 및 $H_2O$로 용매 분획하였다. 이 중 EtOAc 및 n-BuOH 분획으로부터 silica gel chromatography를 반복하여 5개의 화합물을 분리하였다. 각 화합물의 화학구조는 NMR, MS 및 IR 등의 스펙트럼 데이터를 해석하여, astragalin (1), kaempferol 3-O-${\alpha}$-L-rhamnopyranosyl (1${\rightarrow}$6)-${\beta}$-D-glucopyranoside (2), rutin(3), kaempferol 3-O-${\alpha}$-L-rhamnopyranosyl(1${\rightarrow}$4)-${\alpha}$-Lrhamnopyranosyl(1${\rightarrow}$6)-${\beta}$-D-glucopyranoside(4), quercetin 3-O-${\alpha}$-L-rhamnopyranosyl(1${\rightarrow}$4)-${\alpha}$-L-rhamnopyranosyl(1${\rightarrow}$6)-${\beta}$-Dglucopyranoside(5)로 동정하였다. 이들 화합물은 FPTase 활성을 억제하였으며, 특히 화합물 3(rutin)은 rat H-ras 세포주의 생장과 bFGF로 유도시킨 HUVECs의 cell migration을 억제하는 것으로 나타났다.

Keywords

References

  1. Bos, J. L. (1989) Ras oncogenes in human cancer. Cancer Res. 49, 4682-4689
  2. Feramisco, J. R., Gross, M., Kamata, T., Rosenberg, M. and Sweer, R. W. (1984) Microinjection of the oncogene from of human H-ras (T-24) protein results in rapid proliferation of quiescent cells. Cell 38, 109-117 https://doi.org/10.1016/0092-8674(84)90531-2
  3. Kohl, N. E., Wilson, F. R., Mosser, S. D., Giuliani, E., de Solms, S. J., Conner, M. W., Anthony, N. J., Holtz, W. J., Gomez, R. P. and Lee, T. J. (1994) Protein farnesyltransferase inhibitors block the growth of ras-dependent tumors in nude mice. PNAS 91, 9141-9145
  4. Folkman, J. (2002) Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 29, 15-18 https://doi.org/10.1053/sonc.2002.37263
  5. Doll, R. and Peto, R. (1981) The cause of cancer. J. Natl. Cancer Inst. 66, 1191-1308
  6. Lee, W. T. (1996) In Standard Illustrations of Korean Plants: Aceriphyllum rossii (1st ed.) Academy Press, Seoul, Korea
  7. Han, J. T., Kim, H. Y., Park, Y. D., Lee, Y. H., Lee, K. R., Kwon, B. M. and Baek, N. I. (2002) Aceriphyllic acid A, a new ACAT inhibitory triterpenoid from Aceriphyllum rossii. Planta Medica 68, 558-561 https://doi.org/10.1055/s-2002-32565
  8. Han, J. T., Bang, M. H., Chun, O. K., Kim, D. O., Lee, C. Y. and Baek, N. I. (2004) Flavonol glycosides from the aerial parts of Aceriphyllum rossii and their antioxidant activities. Arch. Pharm. Res. 27, 390-395 https://doi.org/10.1007/BF02980079
  9. Min, B. S., Lee, I. S., Chang, M. J., Yoo, J. K., Na, M. K., Hung, T. M., Thoung, P. T., Lee, J. P., Kim, J.-H., Kim, J. C., Woo, M. H., Choi, J. S., Lee, H. K. and Bae, K. H. (2008) Anticomplementary activity of triterpenoids from the whole plant of Aceriphyllum rossii against the classical pathway. Planta Medica 74, 726-729 https://doi.org/10.1055/s-2008-1074534
  10. Lee, I. S., Yoo, J. K., Na, M. K., Min, B. S., Lee, J. P., Yun, B. S., Jin, W. Y., Kim, H. J., Youn, U. J., Chen, Q. C., Song, K. S., Seong, Y. H. and Bae, K. H. (2007) Cytotoxicity of triterpenes isolated from Aceriphyllum rossii. Chem. Pharm. Bull. 55, 1376-1378 https://doi.org/10.1248/cpb.55.1376
  11. Oh, H. M., Jwon, B. M., Baek, N. I., Kim, S. H., Lee, J. H., Eun, J. S., Yang, H. J. and Kim, D. K. (2006) Inhibitory activity of 6-O-angeloylprenolin from Centipeda minima on farnesyl protein transferase. Arch. Pharm. Res. 29, 64-66 https://doi.org/10.1007/BF02977470
  12. Choi, W. H., Park, W. Y., Hwang, B. Y., Oh, G. J., Kang, S. J., Lee, K. S. and Ro, J. S. (1998) Phenolic compounds from the stem bark of Cornus walteri Wagner. Kor. J. Pharmacog. 29, 217-224
  13. Webby, R. F. and Markham, K. R. (1990) Flavonol 3-Otriglycosides from Actindia species. Phytochemistry 29, 289-292 https://doi.org/10.1016/0031-9422(90)89052-B
  14. Beck, M. A. and Haberlein, H. (1997) Flavonol glycoside from Eschscholtzia califormica. Phytochemistry 50, 329-332
  15. Lee, M. W., Lee, Y. A., Park, H. M., Toh, S. H., Lee, E. J., Jang, H., D. and Kim, Y. H. (2000) Antioxidative phenolic compounds from the roots of Rhodiola sachalinensis A. Bor. Arch. Pharm. Res. 23, 455-458 https://doi.org/10.1007/BF02976571
  16. Kashiwada, Y., Nonada, G., Nishioka, I., Chang, J. J. and Lee, K. H. (1992) Antitumor agents, 129 tannins and related compounds as selective cytotoxic agents. J. Nat. Prod. 55, 1033-1043 https://doi.org/10.1021/np50086a002
  17. Choo, M. K., Park, E. K., Yoon, H. K. and Kim, D. H. (2002) Antithrombotic and antiallergic activities of daidzein, a metabolite of puerarin and daidzin produced by human intestinal microflora. Biol. Pharm. Bull. 25, 1328-1332 https://doi.org/10.1248/bpb.25.1328
  18. Theoharides, T. C., Alexandrakis, M., Kempuraj, D. and Lytinas, M. (2001) Anti-inflammatory actions of flavonoids and structural requirements for new design. Int. J. Immunopathol. Pharmacol. 14, 119-127
  19. Kobo, M., Matsuda, M., Kimura, Y., Okuda, H. and Arichi, S. (1984) Scutellariae Radix. X. Inhibitory effects of various flavonoids on histamine release from rat peritoneal mast cells in vitro. Chem. Pharm. Bull. 32, 5051-5054 https://doi.org/10.1248/cpb.32.5051
  20. Middleton, R. and Drzewiecki, G. (1984) Flavonoid inhibition of human basophil histamine release stimulated by various agents. Biochem. Pharmacol. 33, 3333-3338 https://doi.org/10.1016/0006-2952(84)90102-3
  21. Kang, H. M., Kim, J. H., Lee, M. Y., Son, K. H., Yang, D. C., Baek, N. I. and Kwon, B. M. (2004) Relationship between flavonoiod structure and inhibition of farnesyl protein transferase. Nat. Prod. Res. 18, 349-356 https://doi.org/10.1080/14786410310001622022
  22. Baek, N. I., Kim, D. S., Lee, Y. H., Park, J. D., Lee, C. B. and Kim, S. I. (1995) Cytotoxicities of ginseng saponins and their degradation products against some cancer cell lines. Arch. Pharm. Res. 18, 164-168 https://doi.org/10.1007/BF02979189
  23. Liu, J. J., Huang, T. S., Cheng, W. F. and Lu, F. J. (2003) Baicalein and baicalin are potent inhibitors of angiogenesis: Inhibition of endothelial cell proliferation, migration and differentiation. Int. J. Cancer 106, 59-565
  24. Kuo, M. L., Lin, J. K., Huang, T. S. and Yang, N. C. (1994) Reversion of the transformed phenotypes of v-H-ras NIH3T3 cells by flavonoids through attenuating the content of phosphotyrosine. Cancer Lett. 87, 91-97 https://doi.org/10.1016/0304-3835(94)90414-6
  25. Folkman, J. (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, 27-31 https://doi.org/10.1038/nm0195-27
  26. Carmeliet, P. and Siegel, Y. (1992) Angiogenesis. J. Biol. Chem. 26, 10931-10934
  27. Hanahan, D. and Folkman, J. (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353-364 https://doi.org/10.1016/S0092-8674(00)80108-7
  28. Arbiser, J. L., Moses, M. A., Fernandez, C. A., Ghiso, N., Cao, Y., Klauber, N., Frank, D., Brownlee, M., Flynn, E., Parangi, S., Byers, H. R. and Folkman, J. (1997) Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. PNAS 94, 861-866
  29. Guruvayoorappan, C. and Kuttan, G. (2007) Antiangiogenic effect of rutin and its regulatory effect on the production of VEGF, IL-1$\beta$ and TNF-$\alpha$ in tumor associated macrophages. J. Biol. Sci. 7, 1511-1519 https://doi.org/10.3923/jbs.2007.1511.1519
  30. Chen, Y., Li, X.-X., Xing, N.-Z. and Cao, X.-G. (2008) Quercetin inhibits choroidal and retinal angiogenesis in vitro. Graefes Arch. Clin. Exp. Ophthalmol. 246, 373-378 https://doi.org/10.1007/s00417-007-0728-9
  31. Lin, C. M., Chang, H., Chen, Y. H., Wu, I. H. and Chiu, J. H. (2006) Wogonin inhibits IL-6-induced angiogenesis via downregulation of VEGF and VEGFR-1, not VEGFR-2. Planta Medica 72, 1305-1310 https://doi.org/10.1055/s-2006-951692
  32. Van der Bij, Gerben, J., Boegels, M., Oosterling, S. J., Kroon, J., Schuckmann, D. T. M., de Vries, Helga, E., Meijer, S., Beelen, R. H. J. and van Egmond, M. (2008) Tumor infiltrating macrophages reduce development of peritoneal colorectal carcinoma metastases. Cancer Lett. 262, 77-86 https://doi.org/10.1016/j.canlet.2007.11.040
  33. Bang, M. H., Jung, Y. J. and Kim, W. K. (2004) Effects of several flavonoids on cancer cell motility in human fibrosarcoma HT 1080 cells. Food Sci. Biotechnol. 13, 739-743

Cited by

  1. Effect of Aceriphyllum rossii Ethanol Extract on Lipid Metabolism in Rats Fed a High-Fat Diet vol.40, pp.10, 2011, https://doi.org/10.3746/jkfn.2011.40.10.1411
  2. The Effects of Antimicrobial, Antioxidant, and Anticancer Properties of Opuntia humifusa Stems vol.41, pp.1, 2012, https://doi.org/10.3746/jkfn.2012.41.1.020
  3. extract by apoptotic pathway in KB human oral cancer cells vol.51, pp.11, 2013, https://doi.org/10.3109/13880209.2013.792847
  4. Quality Characteristics and Biological Activities of Vinegars Added with Young Leaves of Akebia quinata vol.43, pp.7, 2014, https://doi.org/10.3746/jkfn.2014.43.7.989
  5. Antioxidant Activity and Anti-wrinkle Effects of Aceriphyllum rossii Leaf Ethanol Extract vol.31, pp.4, 2015, https://doi.org/10.5487/TR.2015.31.4.363
  6. Antibacterial Activity of Quercetin and trans-Chalcone for Application in Contact Lens Multipurpose Solution vol.21, pp.4, 2016, https://doi.org/10.14479/jkoos.2016.21.4.333
  7. Novel Acylated Flavonol Tetraglycoside with Inhibitory Effect on Lipid Accumulation in 3T3-L1 Cells from Lu’an GuaPian Tea and Quantification of Flavonoid Glycosides in Six Major Processing Types of Tea pp.1520-5118, 2017, https://doi.org/10.1021/acs.jafc.7b00239
  8. Total Polyphenol and Flavonoid of Fruit Extract of Opuntia humifusa and Its Inhibitory Effect on the Growth of MCF-7 Human Breast Cancer Cells vol.38, pp.12, 2009, https://doi.org/10.3746/jkfn.2009.38.12.1679
  9. Biological Activities of Solvent Extracts from Leaves of Aceriphyllum rossii vol.39, pp.12, 2010, https://doi.org/10.3746/jkfn.2010.39.12.1739
  10. Antioxidant Activity in Water and Methanol Extracts from Korean Edible Wild Plants vol.40, pp.1, 2011, https://doi.org/10.3746/jkfn.2011.40.1.029