DOI QR코드

DOI QR Code

Biological Activity of Extracts from Garden Sage (Salvia officinalis L.)

가든 세이지(Salvia officinalis L.) 추출물의 생리활성 탐색

  • Cho, Young-Je (Department of Food Engineering, Kyungpook National University) ;
  • Ju, In-Sik (Department of Food Engineering, Kyungpook National University) ;
  • Yun, Dong-Hyuck (Department of Food Engineering, Kyungpook National University) ;
  • Chun, Sung-Sook (Department of Food Science & Technology, Yeungnam University) ;
  • An, Bong-Jeun (Department of Cosmeceutical Science, Daegu Hanny University) ;
  • Kim, Jeung-Hoan (NIP Biotech) ;
  • Kim, Myung-Uk (Gyungbuk Institute for Marine Bio-Industry)
  • 조영제 (경북대학교 식품공학과) ;
  • 주인식 (경북대학교 식품공학과) ;
  • 윤동혁 (경북대학교 식품공학과) ;
  • 천성숙 (영남대학교 식품가공학과) ;
  • 안봉전 (대구한의대학교 화장품약리학과) ;
  • 김정환 (엔아이피 바이오텍) ;
  • 김명욱 (경북해양바이오 산업연구원)
  • Published : 2008.12.31

Abstract

The extracts from Salvia officinalis were studied for antioxidative activities and inhibitory activities against angiotensin converting enzyme(ACE) and xanthine oxidase (XOase). Total phenolic compounds were found as 22.28, 26.3, 24.63, and 28.22 mg/g in the water, 60% ethanol, 60% methanol and 60% acetone extracts, respectively. The antioxidant activities of Salvia officinalis extracts were measured as $64.4{\pm}1.5%$ at $200\;{\mu}g/ml$ on EDA, inhibition rate on ABTS of $96.9{\pm}0.2%$, antioxidant protection factor of $2.30{\pm}0.16$ PF and TBARS was $0.6{\pm}0.05$ (${\times}100\;{\mu}M$) in the control and $0.28{\pm}0.02$ (${\times}100\;{\mu}M$) in 60% ethanol extracts. Inhibitory activities was the ACE of 75.50% and XOase 100% in 60% ethanol extracts. The 60% ethanol extracts from Salvia officinalis exhibited antimicrobial activities against Helicobacter pylori such as 13 mm of clear zone and inhibition rate of 63.4% with $200\;{\mu}g/ml$ of phenolics content. Rosemarinic acid was the most abundant phenolic compounds as analyzed by HPLC. The results suggest that the 60% ethanol extracts from Salvia officinalis L. will be useful as natural antioxidants and functional foods.

가든 세이지 추출물의 추출 최적 조건을 알아보고자 각각 추출 용매별, 농도별, 시간별로 비교하였다. 가든 세이지는 60% ethane에서 24시간 추출하는 것이 최적 추출조건으로 가장 효율적이라 판단되었다. 한편 생리활성 효과는 추출물의 phenol 농도를 $200\;{\mu}g/ml$로 조절하여 실험하였다. DPPH에 대한 전자 공여능은 60% ethanol 추출물에서 64.4%로 나타났으며, ABTS radical decolorlization은 60% ethanol 추출물에서 96.9%, antioxidant protection factor는 60% ethanol 추출물에서 2.30PF로 나타났으며, PF와 같이 지용성 물질의 항산화력을 나타내는 TBARS값은 centrol의 $0.62{\times}10^2\;{\mu}M$에 비해 60% ethanol 추출물에서 $0.28{\times}10^2\;{\mu}M$의 낮은 TBARS값을 나타내어 항산화 효과가 우수한 것으로 나타났다. Xanthine oxidase 활성억제 효과는 100의 저해율을 나타냈고, ACE활성억제 효과는 75.5%의 저해율을 나타내었으며, Helicobacter pylori균에 대한 활성도 $200\;{\mu}g/ml$ 농도의 액체배지에서 63.4의 저해율을 나타내어 생리활성효과도 우수한 것으로 나타났다.

Keywords

References

  1. Tabance, N., Kirimer, N., Demirci, B., Demirci, F. and Baser, K. H. C. (2001) Composition and antimicrobial activity of the essential oils of Micromeria cristata subsp. Phrygia and enantiomeric distribution of borneol. J. Agric. Food Chem. 49, 4300-4303 https://doi.org/10.1021/jf0105034
  2. Kim, H. J., Ahn, M. S., Kim, G. H. and Kang, M. H. (2006) Antioxidant and antimicrobial activity of Pleurotus eryngii extracts prepared from different aerial part. Korean J. Food Sci. Technol. 38, 779-804
  3. Ali, K. A., Abdelhak, M., George, B. and Panagiotis, K. (2005) Tea and herbal infusions: Their antioxidant activity and phenolic propolis. Food Chem. 89, 27-36 https://doi.org/10.1016/j.foodchem.2004.01.075
  4. Jung, S. W. and Kim, M. K. (2003) Effect of dried powders of chamomile, sage and green tea on antioxidative capacity in 15- month-old rats. Kor. Nut. Soc. 34, 699-710
  5. Huang, M. T., Ho, C. T. and Lee, C. (1992) Phenolic Compounds in Food and their Effects on Health (II), Antioxidants and Cancer Prevention. ACS Symp. Series 507, American Chemical Society, Washington, DC, USA. pp. 54-71
  6. Elzaawely, A. A., Xuan, T. D. and Tawata, S. (2005) Antioxidant and antibacterial activities of Rumex japonicus Houtt. aerial parts. Biol. Pharm. Bull. 28, 2225-2230 https://doi.org/10.1248/bpb.28.2225
  7. Doosan World Encyclopedia. 14, 480
  8. Farag, R. S., Badei, A. Z. M. A., Hawedi, F. M. and Elbaroty, G. S. A. (1989) Antioxidant activity of some spice essential oils on linoleic acid oxidation on aqueous media. J. Am. Oil Chem. Soc. 66, 792 https://doi.org/10.1007/BF02653670
  9. Cuvelier, M. E., Richard, H. and Berset, C. (1996) Antioxidative activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. J. Am. Oil Chem. Soc. 73, 645-652 https://doi.org/10.1007/BF02518121
  10. Areias, F., Valentao, P., Andrade, P. B., Ferreres, F. and Seabra, R. M. (2000) Flavonoids and Phenolic Acids of Sage: Influence of some Agricultural Factors. Agric. Food Chem. 48, 6081-6084 https://doi.org/10.1021/jf000440+
  11. Kim, K. S., Shim, S. H., Jeon,g G. H. and Cheong, C. S. (1998) Antidiabetic activity of constituents of Lycii fructus. J. Aappl. Pharmacol. 6, 378-382
  12. Blois, M. S. (1958) Antioxidant determination by the use of stable free radical. Nature, 26, 1198-1199
  13. Pellegrin, N., Re, R., Yang, M. and Rice-Evans, C. (1998) Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activites applying 2,2'-azinobis(3- ethylbenzothiazoline-6-sulfonic acid) radical cation decolorization assay. Method Enzymol. 299, 379-389
  14. Andarwulan, N. and Shetty, K. (1999) Phenolic content in differentiated tissue cultures of untransformed and agrobacteriumtransformed roots of anise (Pimpinella anisum L.). J. Agric. Food Chem. 47, 1776-1780 https://doi.org/10.1021/jf981214r
  15. Buege, J. A. and Aust, S. D. (1978) Microsomal lipid peroxidation. Method Enzymol. 105, 302-310
  16. Stirpe, F., Della Corte, E. (1969) The regluation of rat liver xanthine oxidase. J. Biol. Chem. 244, 3855-3863
  17. Cushman, D. W. and Ondetti, M. A. (1980) Inhibitors of angiotensin converting enzyme for treatment of hypertension. Biochem. Pharmacol. 29, 1871-1877 https://doi.org/10.1016/0006-2952(80)90096-9
  18. Cavidson, P. H. and Parish, M. E. (1989) Methods of testing the efficacy of food antimicrobials. Food Technol. 43, 148-150
  19. Chun, S. S., Vattem, D. A., Lin, Y. T. and Shetty, K. (2005) Phenolic antioxidants from clonal oregano (Origanum vulgare) with antimicrobial activity against Helicobacter pylori. Process Biochemistry 40, 809-816 https://doi.org/10.1016/j.procbio.2004.02.018
  20. Kuhnau, J. (1976) The flavonoids a class of semiessential food components; their role in human nutrition. World Rev. Nutr. Diet. 24, 117-200
  21. Clark, A. M. and El-Feraly F. S. (1981) Antimicrobial activity of phenolic constituents of Magnolia grandiflora L. J. Pharm. Sci. 70, 951-952 https://doi.org/10.1002/jps.2600700833
  22. Shetty, K. (2001) Biosynthesis and medical application of Rosemarinic acid. J. Herbs Spices Med. Plant 8, 161-181 https://doi.org/10.1300/J044v08n02_05
  23. Zheng, W. and Wang, S. Y. (2001) Antioxidant activity and phenolic compound in selected Herbs. J. Agric. Food Chem. 49, 5165-5170 https://doi.org/10.1021/jf010697n
  24. Cuvelier, M. E., Richahard, H. and Berset, C. (1998) Antioxidative activity of phenolic composition of pilot plant and commercial extracts of sage and rosemary. J. Am. Oil Chem. Soc. 73, 645-652 https://doi.org/10.1007/BF02518121
  25. Torel, J., Gillard, J. and Gillard, P. (1986) Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochemistry 25, 383-385 https://doi.org/10.1016/S0031-9422(00)85485-0
  26. Kim, E. Y., Baik, I. H., Kim, J. H., Kim, S. R. and Rhyu M. R. (2004) Screening of the antioxidant activity of some medicinal plants. Kor. J. Food Sci. Tech. 36, 333-338
  27. Ma, S. J. (2000) Inhibitory effect of onion seasoning on angiotensin converting enzyme. J. Korean Soc. Food Sci. Nutr. 29, 395-400
  28. Vermeirssena, V., Campb, J. V. and Verstraetea, W. (2002) Optimization and validation of an angiotensin converting enzyme inhibition assay for the screening of bioactive peptides. J. Biochem. Biophys. Methods 51, 75-87 https://doi.org/10.1016/S0165-022X(02)00006-4
  29. Erdos, E. G. and Skidgel, R. A. (1987) The angiotensin I converting enzyme. Lab. Invest. 56, 345-348
  30. Ariyoshi, Y. (1993) Angiotensin converting enzyme inhibitors derived from food proteins. Trends Food Sci. Technol. 4, 139-144 https://doi.org/10.1016/0924-2244(93)90033-7
  31. Petrillo, E. W. and Ondetti, M. A. (1982) Angiotensin converting enzyme inhibitors: Medicinal chemistry and biological actions. Med. Chem. Biol. Act. Med. Res. Rev. 2, 1-6
  32. Kwon, Y. S., Lee, H. G., Shin, H. K. and Yang, C. B. (2000) Purification and identification of angiotensin converting enzyme inhibitory peptide from small red bean protein hydrolyzate. Food Sci. Biotechnol. 9, 292-296
  33. Cho, Y. S., Chun, S. S., Kwon, H. J., Kim, J. H., Yoon, S. J. and Lee, K. H. (2005) Comparison of physiological activities between hot-water and ethanol extracts of bokbunja (Rubus coreanum F.). J. Kor. Soc. Food Sci. Nutr. 34, 790-796 https://doi.org/10.3746/jkfn.2005.34.6.790
  34. Paek, N. S. and Kim, Y. M. (1998) $\alpha$-Glucosidase inhibition by culture broth of Streptomyces sp. NS-15. Kor. J. Food Nutr. 11, 640-646
  35. Diker, K. S. and Hascelik, G. (1994) The bactericidal activity of tea against Helicobacter pylori. Lett. Appl. Microbiol. 19, 299-300 https://doi.org/10.1111/j.1472-765X.1994.tb00459.x

Cited by

  1. Physicochemical Characteristics and Antioxidant Activity of Bracken (Pteridium aquilinum Kuhn) in Namhae vol.31, pp.3, 2015, https://doi.org/10.9724/kfcs.2015.31.3.288
  2. Inhibitory Activity against Helicobacter pylori of Isolated Compounds from Pinus koraiensis Siebold et Zucc Leaves vol.59, pp.1, 2016, https://doi.org/10.3839/jabc.2016.005
  3. 진달래꽃(Rhododendron mucronulatum Flos.) 추출물로부터 Helicobacter pylori 억제 효과를 가지는 phenol성 물질의 정제 및 동정 vol.19, pp.8, 2008, https://doi.org/10.5352/jls.2009.19.8.1125