DOI QR코드

DOI QR Code

Microbiological Quality and Potential Pathogen Monitoring for Powdered Infant Formulas from the Local Market

영유아용 분말 조제분유의 미생물 품질분석과 위해세균 모니터링

  • Hwang, Ji-Yeon (Department of Food Science and Biotechnology, Kyungwon University) ;
  • Lee, Ji-Youn (National Veterinary Research and Quarantine Service) ;
  • Park, Jong-Hyun (Department of Food Science and Biotechnology, Kyungwon University)
  • 황지연 (경원대학교 식품생물공학과) ;
  • 이지연 (국립수의과학검역원) ;
  • 박종현 (경원대학교 식품생물공학과)
  • Published : 2008.12.31

Abstract

Ninety-nine samples of powdered infant formula in a market were collected from the local market and their contaminations for total aerobic bacteria, coliform, FAO/WHO Category A, B, and C pathogens were analyzed. Total aerobic bacteria were detected in 92 of 99 samples (93%) at levels of $1.83{\pm}0.68\;Log\;MPN/g$. These levels were below legal levels specified for infant formulas except for one sample detected by 4.5 Log CFU/g. Coliform was detected in 12 of 99 samples (12%) at levels of $1.26{\pm}1.03\;Log\;MPN/g$ whereas non-detection was required according to the specification of coliform in infant formulas. Escherichia coli was detected in 1 of 99 samples by 0.48 Log MPN/g. Salmonella and Enterobacter sakazakii among Category A weren't detected in all the samples. Enterobacteriaceae, Category B group, were detected in 25 samples of total 99 samples (25%) by $0.83{\pm}1.37\;Log\;MPN/g$. Enterobacteriaceae identified by API 20E were Escherichia vulneris, Es. hermannii, Pantoea spp., Citrobacter koseri, Klebsiella pneumoniae, En. cloaceae. Bacillus cereus among Category C was highly detected in 29 of 99 samples (29%) at levels of $0.69{\pm}0.32\;Log\;MPN/g$ with the most probable number count method, which were below legal levels for the specification of B. cereus in infant formulas. Clostridium perfringens, E. coli O157, Staphyloccus aureus, Listeria monocytogenes, Yersinia enterocolitica, and Campylobacter jejuni/coli were not detected. Contamination level of major pathogens was low and falls within the range of specification of infant formulas. However, Enterobacteriaceae and B.cereus showed the high prevalence and some Enterobacteriaceae causing disease were detected. Therefore, it is necessary to monitor the potential pathogens continually and reduce them to improve the microbial quality of non-sterilized powdered infant formulas.

국내에서 생산, 유통되고 있는 영유아용 분말 조제분유 99제품을 수집하여 일반세균, 대장균군, FAO/WHO Category A, B, C 위해세균 분류에 따른 오염현황을 분석하였다. 일반세균수는 총 99개의 제품 중 92개의 제품에서 검출(93%)되었으며 $1.83{\pm}0.68\;Log\;CFU/g$의 분포를 보였다. 최고 $4.5\;Log\;CFU/g$가 검출된 한 제품을 제외하고는 조제분유의 총균수의 기준규격에 적합하였다. 대장균군은 조제분유 대장균군의 기준규격이 음성인 것에 비해 99개의 제품 중 12개의 제품에서 검출(12%)되었으며 $1.26{\pm}1.03\;\log\;MPN/g$의 분포를 보였다. 대장균은 한 제품에서 0.48 log MPN/g으로 검출되었다. Category A 세균인 Salmonella와 En. sakazakii의 오염도 분석 결과 총 99개의 모든 제품에서 검출되지 않았다. Category B group인 세균 중에서 장내세균은 99개의 제품 중 25개의 제품에서 검출(25%)되었고 오염수준은 $0.83{\pm}1.37\;\log\;MPN/g$으로 나타났다. 검출된 Category B group 세균들로는 Escherichia vulneris, Es. hermannii, Pantoea spp., Citrobacter koseri, Klebsiella pneumoniae, Enterobacter cloaceae 등이었다. Category C세균의 오염은 Bacillus cereus가 조제분유 99개의 제품 중에서 29개의 제품이 검출(29%)되어 비교적 높은 오염도를 보였지만 오염수준은 $0.69{\pm}0.32\;\log\;MPN/g$으로서 B. cereus의 국내 기준규격에 모두 적합하였다. 그 외의 Category C 세균은 검출되지 않았다. 국내 유통 조제분유의 주요 위해세균의 대한 미생물 오염정도가 낮아 미생물 기준 규격에 적합한 것으로 평가되었다. 그러나 Category B의 장내세균은 높은 검출율을 보였고 질환을 유발시킬 수 있는 균들이 확인되어 잠재적인 위험이 있다고 사료된다. 따라서 비살균식품인 조제분유의 특성상 잠재적인 위해세균 모니터링이 지속적으로 필요하며 그에 대한 안전성 확보에 능동적 자세가 필요하다.

Keywords

References

  1. Bornemann, R., Zerr, D. M., Heath, J. Koehler, J., Grandjean, M., Pallipamu, R., and Duchin, J. (2002) An outbreak of Salmonella serotype Saintpaul in a children's hospital. Infect. Control Hospital Epidemiol. 23, 671-676 https://doi.org/10.1086/501992
  2. CAC (2004) Proposed draft revision of the recommended international code of practice for foods for infants and children. Available at: ftp://ftp.fao.org/codex/ccfh37/fh37_04e.pdf
  3. CDC (1993) Salmonella serotype Tennesseee in powdered milk products and infant formula. Canada and the United States. MMWR. 42, 516-517
  4. Caubilla Barron, J., Iversen, C., and Forsythe, S. J. (2004) The desiccation survival of Enterobacter sakazakii and related Enterobacteriaceae. 104th ASM General Meeting, New Orleans, LA
  5. Daube, G., China, B., Simon, P., Hvala, K., and Mainil, J. (1994) Typing of Clostridium perfringens by in vitro amplification of toxin genes. J. Bacteriol. 77, 650-655 https://doi.org/10.1111/j.1365-2672.1994.tb02815.x
  6. Derzelle, S., Dilasser, F., Maladen, V., Soudrie, N., Leclercq, A., Lombard, B., and Lafarge, V. (2007) Comparison of three chromogenic media and evaluation of two molecular-based identification systems for the detection of Enterobacter sakazakii from environmental samples from infant formulae factories. J. Food Prot. 70, 1678-1684 https://doi.org/10.4315/0362-028X-70.7.1678
  7. Gonzalez, I., Grant, K. A., Richardson, P. T., Park, S. F., and Collins, M. D. (1997) Specific identification of the enteropathogens Campylobacter jejuni and Campylobacter coli by using a PCR test based on the ceuE gene encoding a putative virulence determinant. J. Clin. Microbiol. 35, 759-763
  8. Iversen, C. and Forsythe, S. (2004) Isolation of Enterobacter sakazakii and other Enterobacteriaceae from powdered infant formula milk and related products. Int. J. Food Microbiol. 21, 771-777 https://doi.org/10.1016/j.fm.2004.01.009
  9. Jaspar, A. H. J., Mutyjens, H. L., and Kollee, L. A. (1990) Neonatal menigitis caused by Enterobacter sakazakii: milk powder is not sterile and bacteria like milk too!. Tijdschr Kindergeneeskd 58, 151-155
  10. Jung, M. K. and Park, J. H. (2006) Prevalence and thermal stability of Enterobacter sakazakii from unprocessed readyto-eat agricultural products and powdered infant formulas. Food Sci. Biotechnol. 15, 152-157
  11. Kim, S. H. and Park, J. H. (2007) Thermal resistance and inactivation of Enterobacter sakazakii isolates during rehydration of powdered infant formula. J. Microbiol. Biotechnol. 17, 364-368
  12. Leuschner, R. G. and Bew, J. (2004) A medium for the presumptive detection of Enterobacter sakazakii in infant formula: Interlaboratory study. J. AOAC Int. 87, 604-613
  13. Linton, D., Lawson, A. J., Owen, R. J., and Stanley, J. (1997) PCR detection, identification to species level, and fingerprinting of Campylobacter jejuni and Campylobacter coli direct from diarrheic samples. J. Clin. Microbiol. 35, 2568- 2572
  14. NVRQS (National Veterinary Research & Quarantine Service). 2007. http://www.nvrqs.-go.kr/Main_Index.asp
  15. Muytjens, H. L., Roelofs-Willemse, H., and Jaspar. G. H. J. (1988) Quality of powdered substitutes for breast milk with regard to members of the family Enterobacteriaceae. J. Clin. Microbiol. 26, 743-746
  16. Olsen, S. J., Bishop, R., Brenner, F. W., Roels, T. H., Bean, N., Tauxe, R. V., and Slutsker, L. (2001) The changing epidermiology of Salmonella: Trends in serotypes isolated from humans in the United States 19871997. J. Infect. Dis. 183, 753-761 https://doi.org/10.1086/318832
  17. Picket, G. and Agate, G. H. (1967) Outbreak of salmonellosis due to a lactose-fermenting variant of Salmonella Newington. Morbidity and Mortality 16, 18
  18. Rowe, B., Begg, N. T., Hutchinson, D. N., Dawkins, H. C., Gibert, R. J., Jacob, M., Hales, B. H., Rae, F. A., and Jepson, M. (1987) Salmonella Ealing infections associated with consumption of infant dried milk. Lancet 2, 900-903
  19. Schwab, A. H., Swartzentruber, A., Wentz, B. A., and Jr. Read, R. B. (1982) Microbiological quality of dry-milk mixes and milk substitute infant formulas. Appl. Environ. Microbiol. 43, 389-391
  20. Shoichi, Y., Eiji, O., Norio, A., and Kasthuri, V. (1999) Cloning and nucleotide sequence analysis of gyrB of Bacillus cereus, B. thuringiensis, B. mycoides, and B. anthracis and their application to the detection of B. cereus in rice. Appl. Environ. Microbiol. 65, 1483-1490
  21. Threlfall, E. J., Ward, L. R., Hampton, M. D., Ridley, A. M., Rowe, B., Roberts, D., Gilbert, R. J., Van Soneren, P., Wall, P. G., and Grimont, P. (1998) Molecular fingerprinting defines a strain of Salmonella enterica serotype Anatum responsible for an international outbreak associated with formula-dried milk. Epidemiol. Infect. 121, 289-293 https://doi.org/10.1017/S0950268898001149
  22. Townsend, S., Barron, J. C, Loc-Carrillo, C., and Forsythe, S. (2007) The presence of endotoxin in powdered infant formula milk and the influence of endotoxin and Enterobacter sakazakii on bacterial translocation in the infant rat. Int. J. Food Microbiol. 24, 67-74 https://doi.org/10.1016/j.fm.2006.03.009
  23. Usera, M. A., Echeita, A., Aladuena, A., Blanco, M. C., Reymundo, R., Prieto, M. I., Tello, O., Cano, R., Herrera, D., and Martinez-Navarro, F. (1996) Interregional foodborne salmonellosis outbreak due to powdered infant formula contaminated with lactose-fermenting Salmonella virchow. Eur. J. Epidemiol. 12, 377-381 https://doi.org/10.1007/BF00145301
  24. Yoo, M. K., Kim, S. S., and Oh, S. S. (2005) Isolation and genotyping of Enterobacter sakazakii from powdered infant formula manufactured in Korea. Food Sci. Biotechnol. 14, 875-877

Cited by

  1. Biofilm Formation and Low pH Viability of Cronobacter spp. (Enterobacter sakazakii) Isolated from Powdered Infant Formula and Infant Foods in Korea vol.29, pp.6, 2009, https://doi.org/10.5851/kosfa.2009.29.6.702
  2. Analysis of Microbial Contamination of Sprouts and Fresh-cut Salads in a Market vol.43, pp.4, 2011, https://doi.org/10.9721/KJFST.2011.43.4.490
  3. Distribution of six exotoxin genes and production of L2-HBL and nheA proteins in six Bacillus cereus isolates from infant formula and produce vol.24, pp.1, 2015, https://doi.org/10.1007/s10068-015-0050-y
  4. Current Cronobacter spp. Researches on Prevalence, Control, and Detection vol.48, pp.4, 2012, https://doi.org/10.7845/kjm.2012.051
  5. Characteristics of enterotoxin distribution, hemolysis, lecithinase, and starch hydrolysis of Bacillus cereus isolated from infant formulas and ready-to-eat foods vol.98, pp.3, 2015, https://doi.org/10.3168/jds.2014-9042
  6. 식중독 세균과 주요 축산식품 및 가공품 조합에 대한 위해순위 결정 vol.30, pp.1, 2015, https://doi.org/10.13103/jfhs.2015.30.1.1