DOI QR코드

DOI QR Code

Internet Traffic Forecasting Using Power Transformation Heteroscadastic Time Series Models

멱변환 이분산성 시계열 모형을 이용한 인터넷 트래픽 예측 기법 연구

  • Ha, M.H. (Dept. of Statistics, Chung-Ang University) ;
  • Kim, S. (Dept. of Statistics, Chung-Ang University)
  • Published : 2008.12.31

Abstract

In this paper, we show the performance of the power transformation GARCH(PGARCH) model to analyze the internet traffic data. The long memory property which is the typical characteristic of internet traffic data can be explained by the PGARCH model rather than the linear GARCH model. Small simulation and the analysis of the real internet traffic show the out-performance of the PARCH MODEL over the linear GARCH one.

본 연구에서는 재무시계얼 자료의 변동성을 분석하는데 유용하게 쓰이는 멱변환 시계열 모형을 인터넷 트래픽 자료 특성 분석에 적용하여 효용성을 보이고자 한다. 트래픽의 특성인 장기기억(long memory)특성을 설명하기 위하여 멱변환 GARCH(PGARCH) 모형을 소개하고 기존의 GARCH 모형보다 더 유용함을 시뮬레이션과 실제 인터넷 트래픽 자료에 적합시켜 입증하였다.

Keywords

References

  1. Basu, A., Mukherjee, A. and Klivansky, S. (1996). Time series models for internet traffic, In Proceedings IEEE IEEE INFOCOM 96, Fifteenth Annual Joint Conference of the IEEE Computer Societies, 4, 24-28
  2. Beran, J. (1994). Statistics for Long-Memory Processes, Chapman & Hall/CRC, New York
  3. Dijk, D. V., Franses, P. H. and Lucas, A. (1999). Testing for ARCH in the presence of additive outliers, Journal of Applied Econometrics, 14, 539-562 https://doi.org/10.1002/(SICI)1099-1255(199909/10)14:5<539::AID-JAE526>3.0.CO;2-W
  4. Ding, Z. and Granger, C. W. J. (1996). Modeling volatility persistence of speculative returns: A new ap- proach, Journal of Econometrics, 73, 185-215 https://doi.org/10.1016/0304-4076(95)01737-2
  5. Ding, Z., Granger, C. W. J. and Engle, R. F. (1993). A long memory property of stock market returns and a new model, Journal of Empirical Finance, 1, 83-106 https://doi.org/10.1016/0927-5398(93)90006-D
  6. Feng, C., He, D. and Sun, Z. (2004). IP traffic trace modelling with ARMAX/GARCH, HET-NET'03, Ilkley, 26-28
  7. Kim, S. (2007). Time series models for performance evaluation of network traffic forecasting, The Korean Journal of Applied Statistics, 20, 219-227 https://doi.org/10.5351/KJAS.2007.20.2.219
  8. Shu, Y., Yu, M., Yang, O., Liu, J. and Feng, H. (2005). Wireless traffic modeling and prediction using seasonal ARIMA models, IEICE-Transactions on Communications, 10, 3992-3999
  9. Zhou, B., He, D. and Sun, Z. (2005). Network Traffic Modeling and Prediction with ARIMA/GARCH, CiteULike

Cited by

  1. A Study on Internet Traffic Forecasting by Combined Forecasts vol.28, pp.6, 2015, https://doi.org/10.5351/KJAS.2015.28.6.1235
  2. Re-Transformation of Power Transformation for ARMA(p, q) Model - Simulation Study vol.28, pp.3, 2015, https://doi.org/10.5351/KJAS.2015.28.3.511