DOI QR코드

DOI QR Code

Surfactin Blocks NO Production in Lipopolysaccharide-activated Macrophages by Inhibiting $NF-{\kappa}B$ Activation

  • Byeon, Se-Eun (School of Bioscience and Biotechnology, and Institute of Bioscience and Biotechnology, Kangwon National University) ;
  • Lee, Yong-Gyu (School of Bioscience and Biotechnology, and Institute of Bioscience and Biotechnology, Kangwon National University) ;
  • Kim, Byung-Hun (School of Bioscience and Biotechnology, and Institute of Bioscience and Biotechnology, Kangwon National University) ;
  • Shen, Ting (School of Bioscience and Biotechnology, and Institute of Bioscience and Biotechnology, Kangwon National University) ;
  • Lee, Sang-Yeol (Department of Life Science, Kyungwon University) ;
  • Park, Hwa-Jin (Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Regional Research Center, Inje University) ;
  • Park, Seung-Chun (College of Veterinary Medicine, Kyungpook National University) ;
  • Rhee, Man-Hee (College of Veterinary Medicine, Kyungpook National University) ;
  • Cho, Jae-Youl (School of Bioscience and Biotechnology, and Institute of Bioscience and Biotechnology, Kangwon National University)
  • Published : 2008.12.31

Abstract

Surfactin is a natural biosurfactant derived from Bacillus subtilis and has various biological activities such as anticancer, antiplatelet, and anti-inflammatory effects. In this study, the inhibitory mechanism of surfactin in NO production from macrophages was examined. Surfactin down regulated LPS-induced NO production in RAW264.7 cells and primary macrophages with $IC_{50}$ values of 31.6 and $22.4{\mu}M$, respectively. Immunoblotting analysis showed that surfactin strongly blocked the phosphorylation of IKK and $l{\kappa}B{\alpha}$ and the nuclear translocation of $NF-{\kappa}B$ (p65). Therefore, these data suggest that surfactin may act as a bacterium-derived anti-inflammatory agent with anti-$NF-{\kappa}B$ activity.

Keywords

References

  1. Beitz, L. O., D. A. Fruman, T. Kurosaki, L. C. Cantley, and A. M. Scharenberg. 1999. SYK is upstream of phosphoinositide 3- kinase in B cell receptor signaling. J. Biol. Chem. 274: 32662-32666 https://doi.org/10.1074/jbc.274.46.32662
  2. Carrillo, C., J. A. Teruel, F. J. Aranda, and A. Ortiz. 2003. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim. Biophys. Acta 1611: 91-97 https://doi.org/10.1016/S0005-2736(03)00029-4
  3. Cho, J. Y., K. U. Baik, J. H. Jung, and M. H. Park. 2000. In vitro anti-inflammatory effects of cynaropicrin, a sesquiterpene lactone, from Saussurea lappa. Eur. J. Pharmacol. 398: 399-407 https://doi.org/10.1016/S0014-2999(00)00337-X
  4. Cho, J. Y., A. R. Kim, H. G. Joo, B. H. Kim, M. H. Rhee, E. S. Yoo, D. R. Katz, B. M. Chain, and J. H. Jung. 2004. Cynaropicrin, a sesquiterpene lactone, as a new strong regulator of CD29 and CD98 functions. Biochem. Biophys. Res. Commun. 313: 954-961 https://doi.org/10.1016/j.bbrc.2003.12.026
  5. Cho, J. Y., J. Park, P. S. Kim, E. S. Yoo, K. U. Baik, and M. H. Park. 2001. Savinin, a lignan from Pterocarpus santalinus inhibits tumor necrosis factor-alpha production and T cell proliferation. Biol. Pharm. Bull. 24: 167-171 https://doi.org/10.1248/bpb.24.167
  6. Choi, E. K., H. C. Jang, J. H. Kim, H. J. Kim, H. C. Kang, Y. W. Paek, et al. 2006. Enhancement of cytokine-mediated NFkappaB activation by phosphatidylinositol 3-kinase inhibitors in monocytic cells. Int. Immunopharmacol. 6: 908-915 https://doi.org/10.1016/j.intimp.2006.01.007
  7. Denkers, E. Y., B. A. Butcher, L. Del Rio, and L. Kim. 2004. Manipulation of mitogen-activated protein kinase/nuclear factorkappaB- signaling cascades during intracellular Toxoplasma gondii infection. Immunol. Rev. 201: 191-205 https://doi.org/10.1111/j.0105-2896.2004.00180.x
  8. Fishman, P., S. Bar-Yehuda, L. Madi, L. Rath-Wolfson, A. Ochaion, S. Cohen, and E. Baharav. 2006. The PI3K-NF-kappaB signal transduction pathway is involved in mediating the antiinflammatory effect of IB-MECA in adjuvant-induced arthritis. Arthritis Res. Ther. 8: R33 https://doi.org/10.1186/ar1887
  9. Hardy, K. and N. H. Hunt. 2004. Effects of a redox-active agent on lymphocyte activation and early gene expression patterns. Free Radic. Biol. Med. 37: 1550-1563 https://doi.org/10.1016/j.freeradbiomed.2004.07.020
  10. Hatziieremia, S., A. I. Gray, V. A. Ferro, A. Paul, and R. Plevin. 2006. The effects of cardamonin on lipopolysaccharide-induced inflammatory protein production and MAP kinase and NFkappaB signalling pathways in monocytes/macrophages. Br. J. Pharmacol. 149: 188-198
  11. Hwang, M. H., Z. Q. Chang, E. H. Kang, J. H. Lim, H. I. Yun, M. H. Rhee, K. S. Jeong, and S. C. Park. 2008. Surfactin C inhibits Mycoplasma hyopneumoniae-induced transcription of proinflammatory cytokines and nitric oxide production in murine RAW 264.7 cells. Biotechnol. Lett. 30: 229-233 https://doi.org/10.1007/s10529-007-9552-x
  12. Hwang, M. H., J. H. Lim, H. I. Yun, M. H. Rhee, J. Y. Cho, W. H. Hsu, and S. C. Park. 2005. Surfactin C inhibits the lipopolysaccharide-induced transcription of interleukin-1beta and inducible nitric oxide synthase and nitric oxide production in murine RAW 264.7 cells. Biotechnol. Lett. 27: 1605-1608 https://doi.org/10.1007/s10529-005-2515-1
  13. Jung, K. K., H. S. Lee, J. Y. Cho, W. C. Shin, M. H. Rhee, T. G. Kim, et al. 2006. Inhibitory effect of curcumin on nitric oxide production from lipopolysaccharide-activated primary microglia. Life Sci. 79: 2022-2031 https://doi.org/10.1016/j.lfs.2006.06.048
  14. Kim, H. G., B. Shrestha, S. Y. Lim, D. H. Yoon, W. C. Chang, D. J. Shin, et al. 2006. Cordycepin inhibits lipopolysaccharideinduced inflammation by the suppression of NF-kappaB through Akt and p38 inhibition in RAW 264.7 macrophage cells. Eur. J. Pharmacol. 545: 192-199 https://doi.org/10.1016/j.ejphar.2006.06.047
  15. Kim, S. Y., J. Y. Kim, S. H. Kim, H. J. Bae, H. Yi, S. H. Yoon, et al. 2007. Surfactin from Bacillus subtilis displays antiproliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression. FEBS Lett. 581: 865-871 https://doi.org/10.1016/j.febslet.2007.01.059
  16. Lee, J. Y., J. Y. Kim, Y. G. Lee, W. C. Shin, T. Chun, M. H. Rhee, and J. Y. Cho. 2007. Hydroquinone, a reactive metabolite of benzene, reduces macrophage-mediated immune responses. Mol. Cells 23: 198-206
  17. Lim, J. H., B. K. Park, M. S. Kim, M. H. Hwang, M. H. Rhee, S. C. Park, and H. I. Yun. 2005. The anti-thrombotic activity of surfactins. J. Vet. Sci. 6: 353-355
  18. Malyshev, I. Y. and A. Shnyra. 2003. Controlled modulation of inflammatory, stress and apoptotic responses in macrophages. Curr. Drug Targets Immune Endocr. Metabol. Disord. 3: 1-22
  19. Yoshimura, A. 2006. Signal transduction of inflammatory cytokines and tumor development. Cancer Sci. 97: 439-447 https://doi.org/10.1111/j.1349-7006.2006.00197.x

Cited by

  1. Surfactin inhibits immunostimulatory function of macrophages through blocking NK-κB, MAPK and Akt pathway vol.9, pp.7, 2008, https://doi.org/10.1016/j.intimp.2009.03.013
  2. Akt Cys-310-targeted Inhibition by Hydroxylated Benzene Derivatives Is Tightly Linked to Their Immunosuppressive Effects vol.285, pp.13, 2008, https://doi.org/10.1074/jbc.m109.074872
  3. Microbial biosurfactants production, applications and future potential vol.87, pp.2, 2008, https://doi.org/10.1007/s00253-010-2589-0
  4. Inhibitory Activities of Kojyl Thioether Derivatives against Nitric Oxide Production Induced by Lipopolysaccharide vol.31, pp.11, 2010, https://doi.org/10.5012/bkcs.2010.31.11.3463
  5. 8-(Tosylamino)quinoline inhibits macrophage-mediated inflammation by suppressing NF-κB signaling vol.33, pp.8, 2008, https://doi.org/10.1038/aps.2012.52
  6. A Leaf Methanolic Extract of Wercklea insignis Attenuates the Lipopolysaccharide-Induced Inflammatory Response by Blocking the NF-κB Signaling Pathway in RAW 264.7 Macrophages vol.35, pp.1, 2008, https://doi.org/10.1007/s10753-011-9322-8
  7. Src/NF-κB-targeted inhibition of LPS-induced macrophage activation and dextran sodium sulphate-induced colitis by Archidendron clypearia methanol extract vol.142, pp.1, 2012, https://doi.org/10.1016/j.jep.2012.04.026
  8. Methanol extract of Osbeckia stellata suppresses lipopolysaccharide- and HCl/ethanol-induced inflammatory responses by inhibiting Src/Syk and IRAK1 vol.143, pp.3, 2008, https://doi.org/10.1016/j.jep.2012.08.015
  9. NF- κ B/AP-1-Targeted Inhibition of Macrophage-Mediated Inflammatory Responses by Depigmenting Compound AP736 Derived from Natural 1,3-Diphenylpropane Skeleton vol.2014, pp.None, 2008, https://doi.org/10.1155/2014/354843
  10. The Dietary Flavonoid Kaempferol Mediates Anti-Inflammatory Responses via the Src, Syk, IRAK1, and IRAK4 Molecular Targets vol.2015, pp.None, 2008, https://doi.org/10.1155/2015/904142
  11. ATP-Binding Pocket-Targeted Suppression of Src and Syk by Luteolin Contributes to Its Anti-Inflammatory Action vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/967053
  12. Fisetin Suppresses Macrophage-Mediated Inflammatory Responses by Blockade of Src and Syk vol.23, pp.5, 2008, https://doi.org/10.4062/biomolther.2015.036
  13. Scutellarein Reduces Inflammatory Responses by Inhibiting Src Kinase Activity vol.19, pp.5, 2015, https://doi.org/10.4196/kjpp.2015.19.5.441
  14. (E)-3-(3-methoxyphenyl)-1-(2-pyrrolyl)-2-propenone displays suppression of inflammatory responses via inhibition of Src, Syk, and NF-κB vol.20, pp.1, 2016, https://doi.org/10.4196/kjpp.2016.20.1.91
  15. Biological activity of lipopeptides from Bacillus vol.101, pp.15, 2008, https://doi.org/10.1007/s00253-017-8396-0
  16. Anticancer Activities of Surfactin and Potential Application of Nanotechnology Assisted Surfactin Delivery vol.8, pp.None, 2008, https://doi.org/10.3389/fphar.2017.00761
  17. Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2 vol.41, pp.2, 2008, https://doi.org/10.1016/j.jgr.2016.02.001
  18. Beauvericin, a cyclic peptide, inhibits inflammatory responses in macrophages by inhibiting the NF-κB pathway vol.21, pp.4, 2017, https://doi.org/10.4196/kjpp.2017.21.4.449
  19. Momordica charantia Inhibits Inflammatory Responses in Murine Macrophages via Suppression of TAK1 vol.46, pp.2, 2008, https://doi.org/10.1142/s0192415x18500222
  20. Effects of dietary Bacillus amyloliquefaciens supplementation on growth performance, intestinal morphology, inflammatory response, and microbiota of intra-uterine growth retarded weanling piglets vol.9, pp.1, 2008, https://doi.org/10.1186/s40104-018-0236-2
  21. Biosurfactants: A Covid-19 Perspective vol.11, pp.None, 2008, https://doi.org/10.3389/fmicb.2020.01341
  22. Regulation of 8-Hydroxydaidzein in IRF3-Mediated Gene Expression in LPS-Stimulated Murine Macrophages vol.10, pp.2, 2008, https://doi.org/10.3390/biom10020238
  23. Molecular Signatures of JMJD10/ MINA53 in Gastric Cancer vol.12, pp.5, 2008, https://doi.org/10.3390/cancers12051141
  24. Biosurfactants as a Novel Additive in Pharmaceutical Formulations: Current Trends and Future Implications vol.21, pp.11, 2020, https://doi.org/10.2174/1389200221666201008143238