DOI QR코드

DOI QR Code

Lactobacillus casei Secreting ${\alpha}$-MSH Induces the Therapeutic Effect on DSS-Induced Acute Colitis in Balb/c Mice

  • Yoon, Sun-Woo (Mucosal Immunology Laboratory, BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Chul-Ho (Disease Model Research Center, KRIBB) ;
  • Kim, Jeong-Yoon (School of Bioscience and Biotechnology, Chungnam National University) ;
  • Kim, Jie-Youn (BioLeaders Corporation) ;
  • Sung, Moon-Hee (BioLeaders Corporation) ;
  • Poo, Har-Young (Mucosal Immunology Laboratory, BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Published : 2008.12.31

Abstract

The neuropeptide ${\alpha}$-melanocyte-stimulating hormone (${\alpha}$-MSH) has anti-inflammatory property by down regulating the expressions of proinflammatory cytokines. Because ${\alpha}$-MSH elicits the anti-inflammatory effect in various inflammatory disease models, we examined the therapeutic effect of oral administration of recombinant Lactobacillus casei, which secretes ${\alpha}$-MSH (L. casei-${\alpha}$-MSH), on dextran sulfate sodium (DSS)-induced colitis in Balb/c mice. Thus, we constructed the ${\alpha}$-MSH-secreting Lactobacillus casei by the basic plasmid, pLUAT-ss, which was composed of a PldhUTLS promoter and ${\alpha}$-amylase signal sequence from Streptococcus bovis strain. Acute colitis was induced by oral administration of 5% DSS in drinking water for 7 days. To investigate the effect of L. casei-${\alpha}$-MSH on the colitis, L. casei or L. casei-${\alpha}$-MSH was orally administered for 7 days and their effects on body weight, mortality rate, cytokine production, and tissue myeloperoxidase (MPO) activity were observed. Administration of L. casei-${\alpha}$-MSH reduced the symptom of acute colitis as assessed by body weight loss (DSS alone: $14.45{\pm}0.2\;g$; L. casei-${\alpha}$-MSH: $18.2{\pm}0.12\;g$), colitis score (DSS alone: $3.6{\pm}0.4$; L. casei-${\alpha}$-MSH: $1.4{\pm}0.6$), MPO activity (DSS alone: $42.7{\pm}4.5\;U/g$; L. casei-${\alpha}$-MSH: $10.25{\pm}0.5\;U/g$), survival rate, and histological damage compared with the DSS alone mice. L. casei-${\alpha}$-MSH-administered entire colon showed reduced in vitro production of proinflammatory cytokines and $NF-{\kappa}B$ activation. The ${\alpha}$-MSH-secreting recombinant L. casei showed significant anti-inflammatory effects in the murine model of acute colitis and suggests a potential therapeutic role for this agent in clinical inflammatory bowel diseases.

Keywords

References

  1. Bantel, H., C. Berg, M. Vieth, M. Stolte, W. Kruis, and K. Schulze-Osthoff. 2000. Mesalazine inhibits activation of transcription factor NF-kappaB in inflamed mucosa of patients with ulcerative colitis. Am. J. Gastroenterol. 95: 3452-3457
  2. Barbara, G., Z. Xing, C. M. Hogaboam, J. Gauldie, and S. M. Collins. 2000. Interleukin 10 gene transfer prevents experimental colitis in rats. Gut 46: 344-349 https://doi.org/10.1136/gut.46.3.344
  3. Bhardwaj, R. S., A. Schwarz, E. Becher, K. Mahnke, Y. Aragane, T. Schwarz, and T. A. Luger. 1996. Pro-opiomelanocortinderived peptides induce IL-10 production in human monocytes. J. Immunol. 156: 2517-2521
  4. Blumberg, R. S., L. J. Saubermann, and W. Strober. 1999. Animal models of mucosal inflammation and their relation to human inflammatory bowel disease. Curr. Opin. Immunol. 11: 648-656 https://doi.org/10.1016/S0952-7915(99)00032-1
  5. Borruel, N., M. Carol, F. Casellas, M. Antolín, F. de Lara, E. Espín, J. Naval, F. Guarner, and J. R. Malagelada. 2002. Increased mucosal tumor necrosis factor alpha production in Crohn's disease can be downregulated ex vivo by probiotic bacteria. Gut 51: 659-664 https://doi.org/10.1136/gut.51.5.659
  6. Catania, A., V. Gerloni, S. Procaccia, L. Airaghi, M. G. Manfredi, C. Lomater, L. Grossi, and J. M. Lipton. 1994. The anticytokine neuropeptide alpha-melanocyte-stimulating hormone in synovial fluid of patients with rheumatic diseases: Comparisons with other anticytokine molecules. Neuroimmunomodulation 1: 321-328 https://doi.org/10.1159/000097183
  7. Catania, A. and J. M. Lipton. 1993. Alpha-Melanocyte stimulating hormone in the modulation of host reactions. Endocr. Rev. 14: 564-576
  8. Colombo, G., R. Buffa, M. T. Bardella, L. Garofalo, A. Carlin, J. M. Lipton, and A. Catania. 2002-2003. Anti-inflammatory effects of alpha-melanocyte stimulating hormone in celiac intestinal mucosa. Neuroimmunomodulation 10: 208-216 https://doi.org/10.1159/000068323
  9. Cotta, M. A. and T. R. Whitehead. 1993. Regulation and cloning of the gene encoding amylase activity of the ruminal bacterium Streptococcus bovis. Appl. Environ. Microbiol. 59: 189-196
  10. Dieleman, L. A., M. S. Goerres, A. Arends, D. Sprengers, C. Torrice, F. Hoentjen, W. B. Grenther, and R. B. Sartor. 2003. Lactobacillus GG prevents recurrence of colitis in HLA-B27 transgenic rats after antibiotic treatment. Gut 52: 370-376 https://doi.org/10.1136/gut.52.3.370
  11. Dubertret, L., C. Lebreton, and R. Touraine. 1982. Neutrophil studies in psoriatics: In vivo migration, phagocytosis and bacterial killing. J. Invest. Dermatol. 79: 74-78 https://doi.org/10.1111/1523-1747.ep12500028
  12. Fichtner-Feigl, S., I. J. Fuss, J. C. Preiss, W. Strober, and A. Kitani. 2005. Treatment of murine Th1- and Th2-mediated inflammatory bowel disease with NF-kappa B decoy oligonucleotides. J. Clin. Invest. 115: 3057-3071 https://doi.org/10.1172/JCI24792
  13. Gantz, I., Y. Konda, T. Tashiro, Y. Shimoto, H. Miwa, G. Munzert, S. J. Watson, J. DelValle, and T. Yamada. 1993. Molecular cloning of a novel melanocortin receptor. J. Biol. Chem. 268: 8246-8250
  14. Gonzalez-Rey, E., N. Varela, A. F. Sheibanie, A. Chorny, D. Ganea, and M. Delgado. 2006. Cortistatin, an antiinflammatory peptide with therapeutic action in inflammatory bowel disease. Proc. Natl. Acad. Sci. USA 103: 4228-4233 https://doi.org/10.1073/pnas.0508997103
  15. Hogaboam, C. M., B. A. Vallance, A. Kumar, C. L. Addison, F. L. Graham, J. Gauldie, and S. M. Collins. 1997. Therapeutic effects of interleukin-4 gene transfer in experimental inflammatory bowel disease. J. Clin. Invest. 100: 2766-2776 https://doi.org/10.1172/JCI119823
  16. Karin, M. and A. Lin. 2002. NF-kappaB at the crossroads of life and death. Nat. Immunol. 3: 221-227 https://doi.org/10.1038/ni0302-221
  17. Kojouharoff, G., W. Hans, F. Obermeier, D. N. Männel, T. Andus, J. Schölmerich, V. Gross, and W. Falk. 1997. Neutralization of tumor necrosis factor (TNF) but not of IL-1 reduces inflammation in chronic dextran sulfate sodium-induced colitis in mice. Clin. Exp. Immunol. 107: 353-358 https://doi.org/10.1111/j.1365-2249.1997.291-ce1184.x
  18. Krieglstein, C. F., W. H. Cerwinka, A. G. Sprague, F. S. Laroux, M. B. Grisham, V. E. Koteliansky, N. Senninger, D. N. Granger, and A. R. de Fougerolles. 2002. Collagen-binding integrin alpha1beta1 regulates intestinal inflammation in experimental colitis. J. Clin. Invest. 110: 1773-1782 https://doi.org/10.1172/JCI200215256
  19. Lee, J. S., H. Poo, D. P. Han, S. P. Hong, K. Kim, M. W. Cho, E. Kim, M. H. Sung, and C. J. Kim. 2006. Mucosal immunization with surface-displayed severe acute respiratory syndrome coronavirus spike protein on Lactobacillus casei induces neutralizing antibodies in mice. J. Virol. 80: 4079- 4087 https://doi.org/10.1128/JVI.80.8.4079-4087.2006
  20. Lipton, J. M., H. Zhao, T. Ichiyama, G. S. Barsh, and A. Catania. 1999. Mechanisms of anti-inflammatory action of alpha-MSH peptides: In vivo and in vitro evidence. Ann. N.Y. Acad. Sci. 885: 173-182 https://doi.org/10.1111/j.1749-6632.1999.tb08674.x
  21. Luger, T. A., T. Brzoska, T. E. Scholzen, D. H. Kalden, C. Sunderkotter, C. Armstrong, and J. Ansel. 2000. The role of alpha-MSH as a modulator of cutaneous inflammation. Ann. N.Y. Acad. Sci. 917: 232-238 https://doi.org/10.1111/j.1749-6632.2000.tb05388.x
  22. Maaser, C., K. Kannengiesser, C. Specht, A. Lugering, T. Brzoska, T. A. Luger, W. Domschke, and T. Kucharzik. 2006. Crucial role of the melanocortin receptor MC1R in experimental colitis. Gut 55: 1415-1422 https://doi.org/10.1136/gut.2005.083634
  23. Matsumoto, S., T. Hara, T. Hori, K. Mitsuyama, M. Nagaoka, N. Tomiyasu, A. Suzuki, and M. Sata. 2005. Probiotic Lactobacillus-induced improvement in murine chronic inflammatory bowel disease is associated with the downregulation of pro-inflammatory cytokines in lamina propria mononuclear cells. Clin. Exp. Immunol. 140: 417-426 https://doi.org/10.1111/j.1365-2249.2005.02790.x
  24. Mimura, T., F. Rizzello, U. Helwig, G. Poggioli, S. Schreiber, et al. 2004. Once daily high dose probiotic therapy (VSL#3) for maintaining remission in recurrent or refractory pouchitis. Gut 53: 108-114 https://doi.org/10.1136/gut.53.1.108
  25. Narita, J., K. Okano, T. Kitao, S. Ishida, T. Sewaki, M. H. Sung, H. Fukuda, and A. Kondo. 2006. Display of alphaamylase on the surface of Lactobacillus casei cells by use of the PgsA anchor protein, and production of lactic acid from starch. Appl. Environ. Microbiol. 72: 269-275 https://doi.org/10.1128/AEM.72.1.269-275.2006
  26. Okayasu. I., S. Hatakeyama, M. Yamada, T. Ohkusa, Y. Inagaki, and R. Nakaya. 1990. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98: 694-702 https://doi.org/10.1016/0016-5085(90)90290-H
  27. Oktar, B. K., F. Ercan, B. C. Yegen, and I. Alican. 2000. The effect of alpha-melanocyte stimulating hormone on colonic inflammation in the rat. Peptides 21: 1271-1277 https://doi.org/10.1016/S0196-9781(00)00269-2
  28. Papadakis, K. A. and S. R. Targan. 2000. Role of cytokines in the pathogenesis of inflammatory bowel disease. Annu. Rev. Med. 51: 289-298 https://doi.org/10.1146/annurev.med.51.1.289
  29. Podolsky, D. K. 1991. Inflammatory bowel disease. N. Engl. J. Med. 325: 928-937 https://doi.org/10.1056/NEJM199109263251306
  30. Rajora, N., G. Boccoli, D. Burns, S. Sharma, A. P. Catania, and J. M. Lipton. 1997. Alpha-MSH modulates local and circulating tumor necrosis factor-alpha in experimental brain inflammation. J. Neurosci. 17: 2181-2186 https://doi.org/10.1523/JNEUROSCI.17-06-02181.1997
  31. Rajora, N., G. Boccoli, A. Catania, and J. M. Lipton. 1997. Alpha-MSH modulates experimental inflammatory bowel disease. Peptides 18: 381-385 https://doi.org/10.1016/S0196-9781(96)00345-2
  32. Schultz, M., C. Veltkamp, L. A. Dieleman, W. B. Grenther, P. B. Wyrick, S. L. Tonkonogy, and R. B. Sartor. 2002. Lactobacillus plantarum 299V in the treatment and prevention of spontaneous colitis in interleukin-10-deficient mice. Inflamm. Bowel Dis. 82: 71-80
  33. Seegers, J. F. 2002. Lactobacilli as live vaccine delivery vectors: Progress and prospects. Trends Biotechnol. 20: 508-515 https://doi.org/10.1016/S0167-7799(02)02075-9
  34. Shanahan, F. 2001. Probiotics in inflammatory bowel disease. Gut 48: 609 https://doi.org/10.1136/gut.48.5.609
  35. Siegmund, B., F. Rieder, S. Albrich, K. Wolf, C. Bidlingmaier, G. S. Firestein, et al. 2001. Adenosine kinase inhibitor GP515 improves experimental colitis in mice. J. Pharmacol. Exp. Ther. 296: 99-105
  36. Steidler, L., W. Hans, L. Schotte, S. Neirynck, F. Obermeier, W. Falk, W. Fiers, and E. Remaut. 2000. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289: 1352-1355 https://doi.org/10.1126/science.289.5483.1352
  37. Tien, M. T., S. E. Girardin, B. Regnault, L. Le Bourhis, M. A. Dillies, J. Y. Coppée, R. Bourdet-Sicard, P. J. Sansonetti, and T. Pédron. 2006. Anti-inflammatory effect of Lactobacillus casei on Shigella-infected human intestinal epithelial cells. J. Immunol. 176: 1228-1237 https://doi.org/10.4049/jimmunol.176.2.1228
  38. Vowinkel, T., T. J. Kalogeris, M. Mori, C. F. Krieglstein, and D. N. Granger. 2004. Impact of dextran sulfate sodium load on the severity of inflammation in experimental colitis. Dig. Dis. Sci. 49: 556-564 https://doi.org/10.1023/B:DDAS.0000026298.72088.f7
  39. Vowinkel, T., M. Mori, C. F. Krieglstein, J. Russell, F. Saijo, S. Bharwani, et al. 2004. Apolipoprotein A-IV inhibits experimental colitis. J. Clin. Invest. 114: 260-269 https://doi.org/10.1172/JCI200421233

Cited by

  1. $^1H$ NMR-based Metabonomic Assessment of Probiotic Effects in a Colitis Mouse Model vol.33, pp.7, 2008, https://doi.org/10.1007/s12272-010-0716-1
  2. Nutritional and Probiotic Supplementation in Colitis Models vol.57, pp.11, 2008, https://doi.org/10.1007/s10620-012-2284-3
  3. Analysis on evolutionary relationship of amylases from archaea, bacteria and eukaryota vol.32, pp.2, 2016, https://doi.org/10.1007/s11274-015-1979-y
  4. Applications of Genetically Modified Immunobiotics with High Immunoregulatory Capacity for Treatment of Inflammatory Bowel Diseases vol.8, pp.None, 2008, https://doi.org/10.3389/fimmu.2017.00022
  5. Probing the Role of Melanocortin Type 1 Receptor Agonists in Diverse Immunological Diseases vol.9, pp.None, 2008, https://doi.org/10.3389/fphar.2018.01535
  6. Engineering of lactic acid bacteria for delivery of therapeutic proteins and peptides vol.103, pp.5, 2019, https://doi.org/10.1007/s00253-019-09628-y