DOI QR코드

DOI QR Code

Isolation and Physiological Characterization of Bacillus clausii SKAL-16 Isolated from Wastewater

  • Lee, Sung-Hun (Department of Biological Engineering, Seokyeong University) ;
  • Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
  • Published : 2008.12.31

Abstract

An alkaliphilic bacterium, Bacillus clausii SKAL-16, was isolated from soil that had been contaminated with vegetable oil. The optimal pH and general pH range for bacterial growth was 8, and 7 to 10, respectively. The bacterium could grow on tributyrin and glycerol, but could not grow on acetate and butyrate. The SKAL-16 strain excreted butyric acid during growth on tributyrin, and selectively ingested glycerol during growth on a mixture of butyric acid and glycerol. The SKAL-16 generated intracellular lipase, but did not produce esterase and extracellular lipase. The DNA fragment amplified with the chromosomal DNA of SKAL-16 and primers designed on the basis of the esterase-coding gene of Bacillus clausii KSM-KI6 was not identical with the esterase-coding gene contained in the GenBank database. Pyruvate dehydrogenase, isocitrate dehydrogenase, and malate dehydrogenase activities were detected in the cell-free extract (crude enzyme).

Keywords

References

  1. Baronofsky, J. J., J. A. Wilhelmus, and E. R. Kashaket. 1984. Uncoupling by acetic acid limits growth of and acetogenesis by Clostridium thermoaceticum. Appl. Environ. Microbiol. 48: 1134-1139
  2. Bozdogan, B., S. Galopin, and R. Leclercq. 2004. Characterization of a new-related macrolide resistance gene present in probiotic strain of Bacillus clausii. Appl. Environ. Microbiol. 70: 280-284 https://doi.org/10.1128/AEM.70.1.280-284.2004
  3. Christiansen, T., B. Christensen, and J. Nielsen. 2002. Metabolic network analysis of Bacillus clausii on minimal and semirich medium using $^{13}C$-labeled glucose. Metab. Eng. 4: 159-169 https://doi.org/10.1006/mben.2001.0219
  4. Crueger, W. and A. Crueger. 1989. Biotechnology: A Textbook of Industrial Microbiology. $2^{nd}$ Ed. pp. 59-63. Sinauer Associates, Inc. Sunderland, MA
  5. Dupuis, C., C. Corre, and P. Boyaval. 1993. Lipase and esterase activities of Propionibacterium freudenreichii subsp. freudenreichii. Appl. Environ. Microbiol. 59: 4004-4009
  6. Flickinger, M. C. and D. Perfman. 1977. Application of oxygen-enriched aeration in the conversion of glycerol to dihydroxyacetone by Gluconobacter melanogenus IFO 3293. Appl. Environ. Microbiol. 33: 706-712
  7. Gottschalk, G. 1986. Bacterial Metabolism. 2nd Ed. pp. 149-154. Springer-Verlag. New York
  8. Harris, H. and D.A. Hopkinson. 1976. Handbook of Enzyme Electrophoresis in Human Genetics. Section 3.1.1.1 Esterase. North-Holland Publishing Company, New York
  9. Hayashida, S., Y. Teramoto, T. Inoue, and S. Mitsuiki. 1990. Occurrence of an affinity site apart from the active site on the rawstarch- digesting but non-raw-starch-adsorbable Bacillus subtillis 65 $\alpha$-amylase. Appl. Environ. Microbiol. 56: 2584-2586
  10. Higerd, T. B. 1977. Isolation of acetyl esterase mutants of Bacillus subtilis 168. J. Bacteriol. 129: 973-977
  11. Holme, D. J. and H. Peck. 1998. Analytical Biochemistry. 3rd Ed. pp. 53-60. Addison Wesley Longman, New York
  12. Ikawa, K., H. Araki, Y. Tsujino, Y. Hajashi, K. Igarashi, Y. Hatada, et al. 1998. Hyperexpression of the gene for a Bacillus a-amylase in Bacillus subtilis cells: Enzymatic properties and crystallization of the recombinant enzyme. Biosci. Biotechnol. Biochem. 62: 1720-1725 https://doi.org/10.1271/bbb.62.1720
  13. Janssen, P. H. and B. Schink. 1995. Pathway of butyrate catabolism by Desulfobacterium cetonicum. J. Bacteriol. 177: 3870-3872 https://doi.org/10.1128/jb.177.13.3870-3872.1995
  14. Kok, R. G., C. B. Nudel, R. H. Gonzalez, I. M. Nugteren-Roodzant, and K. J. Hellingwerz. 1996. Physiological factors affecting production of extracellular lipase (LipA) in Acinetobacter calcoaceticus BD413: Fatty acid repression of lipA expression and degradation of LipS. J. Bacteriol. 178: 6025-6035 https://doi.org/10.1128/jb.178.20.6025-6035.1996
  15. Kulkarni, N., M. Lakshmikumaran, and M. Rao. 1999. Xylanase II from an alkaliphilic thermophilic Bacillus with a distinctly different structure from other xylanases: Evolutionary relationship to alkaliphilic xylanases. Biochem. Biophys. Res. Commun. 263: 640-645 https://doi.org/10.1006/bbrc.1999.1420
  16. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  17. Lanz, W. W. and P. P. Williams. 1973. Characterization of esterase produced by a ruminal bacterium identified as Butyrivibrio fibrisolvens. J. Bacteriol. 113: 1170-1176
  18. Lefebvre, X., E. Paul, M. Mauret, P. Baptiste and B. Capdeville. 1998. Kinetic characterization of saponified domestic lipid residues aerobic biodegradation. Water Res. 32: 3031-3038 https://doi.org/10.1016/S0043-1354(98)00053-0
  19. Linderen, V. and L. Rutberg. 1974. Glycerol metabolism in Bacillus subtilis: Gene-enzyme relationships. J. Bacteriol. 119: 431-442
  20. Louis, P., S. H. Duncan, S. K. McCrae, J. Millar, M. S. Jackson, and H. J. Flint. 2004. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from human colon. J. Bacteriol. 186: 2099-2106 https://doi.org/10.1128/JB.186.7.2099-2106.2004
  21. Meghji, K., O. P. Ward, and A. Araujo. 1990. Production, purification and properties of extracellular carboxyl esterases from Bacillus subtilis NRRL365. Appl. Environ. Microbiol. 56: 3375-3740
  22. Moat, A. G., J. W. Foster, and M. P. Spector. 2002. Microbial Physiology. 4th Ed. pp. 466-474. Wiley-Liss, New York
  23. Molenaar, D., E. van der Rest, A. Drysch, and R. Yücel. 2000. Functions of the membrane-associated and cytoplasmic malate dehydrogenase in the citric acid cycle of Corynebacterium glutamicum. J. Bacteriol. 182: 6884-6891 https://doi.org/10.1128/JB.182.24.6884-6891.2000
  24. Mongkolthanaruk, W. and S. Dharmsthiti. 2002. Biodegradation of lipid-rich wastewater by a mixed bacterial consortium. Intern. Biodeterio Biodegrad. 50: 101-105 https://doi.org/10.1016/S0964-8305(02)00057-4
  25. O'Brien, W. E. and L. G. Ljungdahl. 1972. Fermentation of fructose and synthesis of acetate from carbon dioxide by Clostridium formicoaceticum. J. Bacteriol. 109: 626-632
  26. Ogawa, T., K. Murakami, H. Mori, N. Ishii, M. Tomita, and M. Yoshin. 2007. Role of phosphoenolpyruvate in the NADP-isocitrate dehydrogenase and isocitrate lyase reaction in Escherichia coli. J. Bacteriol. 189: 1176-1178 https://doi.org/10.1128/JB.01628-06
  27. Ohtsubo, S., K. Demizu, S. Kohno, I. Miura, T. Ogawa, and H. Fukuda. 1992. Comparison of acetate utilization among strains of an aceticlastic methanogen, Methanothrix soehngenii. Appl. Environ. Microbiol. 58: 703-705
  28. Pflug, J. P., G. M. Smith, and R. Christensen. 1981. Effect of soybean casein digest agar lot on number of Bacillus stearothermophilus spores recovered. Appl. Environ. Microbiol. 42: 226-230
  29. Pons, J. L., B. Picard, P. Niel, G. Leluan, and P. Goullet. 1993. Esterase electrophoresis polymorphism of human and animal strains of Clostridium perfringens. Appl. Environ. Microbiol. 59: 496-501
  30. Robson, L. M. and G. H. Chambliss. 1984. Characterization of the cellulolytic activity of a Bacillus isolate. Appl. Environ. Microbiol. 472: 1039-1046
  31. Ruch, F. E., J. Lengeler, and E. C. C. Lin. Regulation of glycerol catabolism in Klebseilla aerogenes. J. Bacteriol. 119: 50-56
  32. Senesi, S., F. Celandroni, A. Tavanti, and E. Chelardi. 2001. Molecular characterization and identification of Bacillus clausii strains marketed for use in oral bacteriotherapy. Appl. Environ. Microbiol. 67: 834-839 https://doi.org/10.1128/AEM.67.2.834-839.2001
  33. Stuer, W., K. E. Jaeger, and U. K. Winkler. 1986. Purification of extracellular lipase from Pseudomonas aeruginosa. J. Bacteriol. 168: 1070-1074 https://doi.org/10.1128/jb.168.3.1070-1074.1986
  34. Takami, H. and K. Horikoshi. 2000. Analysis of the genome of an alkaliphilic Bacillus strain from an industrial point of view. Extremophiles 4: 99-108 https://doi.org/10.1007/s007920050143
  35. Takami, H., Y. Takaki, K. Nakasone, T. Sakiyam, G. Maeno, R. Sasaki, C. Hirama, F. Fuji, and N. Masui. 1990. Genetic analysis of the chromosome of alkaliphile Bacillus halodurans C-125. Extremophiles 3: 227-233 https://doi.org/10.1007/s007920050120
  36. Verger, R. 1997. Interfacial activation of lipase: Facts and artifacts. Trends Biotechnol. 15: 32-38 https://doi.org/10.1016/S0167-7799(96)10064-0
  37. Winkler, U. K. and M. Stuckmann. 1979. Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J. Bacteriol. 138: 663-670
  38. Yang, S. T., I. C. Tang, and M. R. Okos. 1987. Kinetics of homoacetic fermentation of lactate by Clostridium formicoaceticum. Appl. Environ. Microbiol. 53: 823-827