A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions

  • Published : 2008.12.31

Abstract

The purpose of this study is mainly directed towards present of viewpoints on critical and commentary analysis on blood rheology, blood viscosity models, and physiological flow conditions. Understanding these basics is fundamental to meet the need for a sufficient and reliable CFD model of blood. Most of the used viscosity models on this manner have determined from parameter fitting on experimental viscosity data. Availability of experimental data from literature to define viscosity models of CFD analysis should be accurately chosen and treated in order to avoid any errors. Several basic gaps that limit the CFD model results are identified and given opportunities for future research.

Keywords

References

  1. Abraham, F., M. Behr and M. Heinkenschloss, 2005, Shape optimization in unsteady blood flow: a numerical study of non- Newtonian effects, Comput. Meth. Biomech. Biomed. Eng. 8, 201-212 https://doi.org/10.1080/10255840512331388957
  2. Ai, L. and K. Vafai, 2005, An investigation of Stokes' second problem for non-Newtonian fluids, Numer. Heat Tran. A 47, 955-980 https://doi.org/10.1080/10407780590926390
  3. Anand, M. and K. R. Rajagopal, 2004, A shear-thinning viscoelastic fluid model for describing the flow of blood, Int. J. Cardiovasc. Med. Sci. 4, 59-68
  4. Arjomandi, H., S. S. Barcelona, S. L. Gallocher and M. Vallejo, 2003, Biofluid dynamics of the human circulatory system, Proceedings of the congress on: "biofluid dynamics of the human body systems". Biomedical engineering institute, Florida international university, Miami - Florida, USA
  5. Bagchi, P., 2007, Mesoscale simulation of blood flow in small vessels, Biophys. J. 92 1858-1877 https://doi.org/10.1529/biophysj.106.095042
  6. Bagchi, P., P. C. Johnson and A. S. Popel, 2005, Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow, J. Biomech. Eng. 127, 1070-1080 https://doi.org/10.1115/1.2112907
  7. Ballyk, P. D., D. A. Steinman and C. R. Ethier, 1994, Simulation of non-Newtonian blood flow in an end-to-side anastomosis, Biorheology 31, 565-586 https://doi.org/10.3233/BIR-1994-31505
  8. Barnes, H. A., 1995, A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure, J. of Non-Newtonian Fluid Mech. 56, 221-251 https://doi.org/10.1016/0377-0257(94)01282-M
  9. Barnes, H. A., 2000, Measuring the viscosity of large-particle (and flocculated) suspensions - a note on the necessary gap size of rotational viscometers, J. of Non-Newtonian Fluid Mech. 94, 213-217 https://doi.org/10.1016/S0377-0257(00)00162-2
  10. Barnes, H. A., J. F. Hutton and K. Walters, 1989, An introduction to rheology, Elsevier, Amsterdam
  11. Baskurt, O. K. and H. J. Meiselman, 1977, Cellular determinants of low-shear blood viscosity, Biorheology 34, 235-247 https://doi.org/10.1016/S0006-355X(97)00027-9
  12. Baskurt, O. K. and H. J. Meiselman, 2003, Blood rheology and hemodynamics, Semin. Thromb. Hemost. 29, 435-450
  13. Batchelor, G. K., 1977, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, J. Fluid Mech. 83, 97-117 https://doi.org/10.1017/S0022112077001062
  14. Baumler, H., B. Neu, E. Donath and H. Kiesewetter, 1999, Basic phenomena of red blood cell rouleaux formation biorheology, Biorheology 36, 439-442
  15. Bishop J. J., A. S. Popel, M. Intaglietta and P. C. Johnson, 2001, Rheological effects of red blood cell aggregation in the venous network: a review of recent studies, Biorheology 38, 263-274
  16. Braun, D. B. and M. R. Rosen, 2000, Rheology modifiers handbook: practical use and application, Noyes publications
  17. Brinkman, H. C., 1952, The viscosity of concentrated suspensions and solutions, J. Chem. Phys. 20, 571-572 https://doi.org/10.1063/1.1700493
  18. Bronzino, J. D., 2006, The biomedical engineering handbook, Third edition, CRC
  19. Broughton, G. and L. Squires, 1938, The viscosity of oil-water emulsions, J. Phys. Chem. 42, 253-263 https://doi.org/10.1021/j100897a010
  20. Buchanan, J. R., C. Kleinstreuer and J. K. Comer, 2000, Rheological effects on pulsatile hemodynamics in a stenosed tube, Comput. Fluid 29, 695-724 https://doi.org/10.1016/S0045-7930(99)00019-5
  21. Buchanan, J. R., C. Kleinstreuer, S. Hyun and G. A. Truskey, 2003, Hemodynamics simulation and identification of susceptible sites of atherosclerotic lesion formation in a model abdominal aorta, J. Biomech. 36, 1185-1196 https://doi.org/10.1016/S0021-9290(03)00088-5
  22. Carpinlioglu, M. O. and M. Y. Gundogdu, 2001, A critical review on pulsatile pipe flow studies directing towards future research topics, Flow. Meas. Instrum. 12, 163-174 https://doi.org/10.1016/S0955-5986(01)00020-6
  23. Chan, W. Y., Y. Ding and J. Y. Tu, 2007, Modeling of non-Newtonian blood flow through a stenosed artery incorporating fluid-structure interaction, ANZIAM Journal 47, C507-C523 https://doi.org/10.21914/anziamj.v47i0.1059
  24. Chen, H. Q., G. H. Zhong, L. Li, X. Y. Wang, T. Zhou and Z. Y. Chen, 1991, Effects of gender and age on thixotropic properties of whole blood from healthy adult subjects, Biorheology 28, 177-183 https://doi.org/10.3233/BIR-1991-283-409
  25. Chen, J., X. Lu and W. Wang, 2006, Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses, J. Biomech. 39, 1983-1995 https://doi.org/10.1016/j.jbiomech.2005.06.012
  26. Chien, S., 1970, Shear dependence of effective cell volume as a determinant of blood viscosity, Science 168, 977-978 https://doi.org/10.1126/science.168.3934.977
  27. Chien, S., S. Usami, R. J. Dellenback and M. I. Gregersen, 1970, Shear-dependent interaction of plasma proteins with erythrocytes in blood rheology, Am. J. Physiol. 219, 143-153
  28. Cho, Y. I. and K. R. Kensey, 1991, Effects of the non-Newtonian viscosity of blood on hemodynamics of diseased arterial flows: part 1, steady flows, Biorheology 28, 241-262 https://doi.org/10.3233/BIR-1991-283-415
  29. Chong, J. S., E. B. Christiansen and A. D. Baer, 1971, Rheology of concentrated suspension, J. Appl. Polymer Sci. 15, 2007-2021 https://doi.org/10.1002/app.1971.070150818
  30. Cosgrove, T., 2005, Colloid science: principles, methods and applications, Blackwell publishing limited
  31. Coussot, P., 2005, Rheometry of pastes, suspensions, and granular materials: applications in industry and environment, Wiley-Interscience
  32. Cristini, V. and G. S. Kassab, 2005, Computer modeling of red blood cell rheology in the microcirculation: a brief overview, Ann. Biomed. Eng. 33, 1724-1727 https://doi.org/10.1007/s10439-005-8776-y
  33. Crowley, T. A. and V. Pizziconi, 2005, Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications, Lab Chip 5, 922-929 https://doi.org/10.1039/b502930a
  34. De Gruttola, S., K. Boomsma and D. Poulikakos, 2005, Computational simulation of a non-Newtonian model of the blood separation process, Artif. Organs 29, 949-959 https://doi.org/10.1111/j.1525-1594.2005.00164.x
  35. Dintenfass, L., 1968, Internal viscosity of the red cell and a blood viscosity equation, Nature 219, 956-958 https://doi.org/10.1038/219956a0
  36. Dupin, M. M., I. Halliday, C. M. Careand, L. Alboul and L. L. Munn, 2007, Modeling the flow of dense suspensions of deformable particles in three dimensions, Phys. Rev. E 75, 066707 https://doi.org/10.1103/PhysRevE.75.066707
  37. Easthope, P. and D. E. Brooks, 1980, A comparison of constitutive functions for whole human blood, Biorheology 17, 235-247
  38. Eilers, H., 1941, Die viskosität von emulsionen hochviskoser stoffe als funktion der konzentration, Kolloid-Z 97, 313-321 https://doi.org/10.1007/BF01503023
  39. Einstein, A., 1911, Berichtigung zu meiner arbeit: eine neue bestimmung der moleküldimensionen, Ann. Phys. 339, 591-592 https://doi.org/10.1002/andp.19113390313
  40. Frankel N. A. and A. Acrivos, 1967, On the viscosity of a concentrated suspension of solid particles, Chem. Eng. Sci. 22, 847-853 https://doi.org/10.1016/0009-2509(67)80149-0
  41. Fung, Y. C. 1993 Biomechanics: mechanical properties of living tissues, 2nd ed. Springer-Verlag, New York
  42. Gijsen, F. J. H., F. N. van de Vosse and J. D. Janssen, 1998, Wall shear stress in backward-facing step flow of a red blood cell suspension, Biorheology 35, 263-79 https://doi.org/10.1016/S0006-355X(99)80010-9
  43. Gijsen, F. J. H., E. Allanic, F. N. van de Vosse and J. D. Janssen, 1999, The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90-degree curved tube, J. Biomech. 32, 705-713 https://doi.org/10.1016/S0021-9290(99)00014-7
  44. Gundogdu, M. Y. and M. O. Carpinlioglu, 1999a, Present state of art on pulsatile flow theory, part 1. laminar and transitional flow regimes, JSME Int. J. 42, 384-397 https://doi.org/10.1299/jsmeb.42.384
  45. Gundogdu, M. Y. and M. O. Carpinlioglu, 1999b, Present state of art on pulsatile flow theory, part 2. turbulent flow regime, JSME Int. J. 42, 398-410
  46. Hatschek, E., 1911, Die viskosität der dispersoide, Kolloid-Z 8, 34-39 https://doi.org/10.1007/BF01503180
  47. Huang, C. R., W. D. Pan, H. Q. Chen and A. L. Copley, 1987a, Thixotropic properties of whole blood, Biorheology 24, 795-801 https://doi.org/10.3233/BIR-1987-24630
  48. Huang, C. R., H. Q. Chen, W. D. Pan, T. Shih, D. S. Kristol and A. L. Copley, 1987b, Effects of hematocrit on thixotropic properties of human blood, Biorheology 24, 803-810 https://doi.org/10.3233/BIR-1987-24631
  49. Janzen, J., T. G. Elliott, C. J. Carter and D. E. Brooks, 2000, Detection of red cell aggregation by low shear rate viscometry in whole blood with elevated plasma viscosity, Biorheology 37, 225-237
  50. Jeffery, G. B., 1922, The motion of ellipsoidal particles immersed in a viscous fluid, Proc. Roy. Soc. Lond. A 102, 161-179
  51. Johnston, B. M., P. R. Johnston, S. Corney and D. Kilpatrick, 2004, Non-Newtonian blood flow in human right coronary arteries: steady state simulations, J. Biomech. 37, 709-720 https://doi.org/10.1016/j.jbiomech.2003.09.016
  52. Joye, D. D., 2003, Shear rate and viscosity corrections for a Casson fluid in cylindrical (Couette) geometries, J. Colloid Interface Sci. 267, 204-210 https://doi.org/10.1016/j.jcis.2003.07.035
  53. Kang, I. S., 2002, A microscopic study on the rheological properties of human blood in the low concentration limit, Korea Aust. Rheol. J. 14, 77-86
  54. Kim S., Y. I. Cho, A. H. Jeon, B. Hogenauer and K. R. Kensey, 2000, A new method for blood viscosity measurement, J. Non-Newtonian Fluid Mech. 94, 47-56 https://doi.org/10.1016/S0377-0257(00)00127-0
  55. Kitano, T., T. Kataoka and T. Shirota, 1981, An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers, Rheol. Acta 20, 207-209 https://doi.org/10.1007/BF01513064
  56. Krieger, I. M., 1972, Rheology of monodisperse lattices, Adv. Colloid Interface Sci. 3, 111-136 https://doi.org/10.1016/0001-8686(72)80001-0
  57. Krieger, I. M., and T. J. Dougherty, 1959, A mechanism for non- Newtonian flow in suspension of rigid spheres, T. Soc. Rheol. 3, 137-152 https://doi.org/10.1122/1.548848
  58. Lee, S. W. and D. A. Steinman, 2007, On the relative importance of rheology for image-based CFD models of the carotid bifurcation, J. Biomech. Eng. 129, 273-278 https://doi.org/10.1115/1.2540836
  59. Leondes, C. T., 2000, Biomechanical systems: techniques and applications, volume IV: biofluid methods in vascular and pulmonary systems: techniques and applications: 4 CRC Press
  60. Lew, H. S., 1969, Formulation of statistical equation of motion of blood, Biophys. J. 9, 235-245 https://doi.org/10.1016/S0006-3495(69)86382-4
  61. Liu, Y., L. Zhang, X. Wang and W. K. Liu, 2004, Coupling of Navier-Stokes equations with protein molecular dynamics and its application to hemodynamics, Int. J. Numer. Meth. Fluid 46, 1237-1252 https://doi.org/10.1002/fld.798
  62. Liu, Y. and W. K. Liu, 2006, Rheology of red blood cell aggregation by computer simulation, J. Comput. Phys. 220, 139-154 https://doi.org/10.1016/j.jcp.2006.05.010
  63. Long, D. S., M. L. Smith, A. R. Pries, K. Ley and E. R. Damiano, 2004, Microviscometry reveals reduced blood viscosity and altered shear rate and shear stres profiles in microvessels after hemodilution, PNAS 101, 10060-10065 https://doi.org/10.1073/pnas.0402937101
  64. Luo, X. Y. and Z. B. Kuang, 1992, A study on the constitutive equation of blood, J. Biomech. 25, 929-934 https://doi.org/10.1016/0021-9290(92)90233-Q
  65. Malkin, A. Y., 1994, Rheology fundamentals, ChemTec Publishing
  66. Maron, S. H. and P. E. Pierce, 1956, Application of Ree-Eyring generalized flow theory to suspensions of spherical particles, J. Colloid Interface Sci. 11, 80-95 https://doi.org/10.1016/0095-8522(56)90023-X
  67. Mazumdar, J. N., 1998, Biofluid mechanics, World Scientific
  68. Meiselman, H. J. and O. K. Baskurt, 2006, Hemorheology and hemodynamics; dove andare?, Clin. Hemorheol. Micro. 35, 37-43
  69. Merrill, E. W., G. C. Cokelet, A. Britten and R. E. Wells, 1963, Non-Newtonian rheology of human blood - effect of fibrinogen deduced by "subtraction", Circ. Res. 13, 48-55 https://doi.org/10.1161/01.RES.13.1.48
  70. Mooney, M. J., 1951, The viscosity of a concentrated suspension of spherical particles, J. Colloid Interface Sci. 6, 162-170 https://doi.org/10.1016/0095-8522(51)90036-0
  71. Morris, C. L., D. L. Rucknagel, R. Shukla, R. A. Gruppo, C. M. Smith and P. Blackshear, 1989, Evaluation of the yield stress of normal blood as a function of fibrinogen concentration and hematocrit, Microvasc. Res. 37, 323-338 https://doi.org/10.1016/0026-2862(89)90050-2
  72. Neofytou, P. and S. Tsangaris, 2006, Flow effects of blood constitutive equations in 3D models of vascular anomalies, Int. J. Numer. Meth. Fluid 51, 489-510 https://doi.org/10.1002/fld.1124
  73. Nubar, Y., 1971, Blood flow, slip, and viscometry, Biophys. J. 11, 252-264 https://doi.org/10.1016/S0006-3495(71)86212-4
  74. O'Callaghan, S., M. Walsh and T. McGloughlin, 2006, Numerical modelling of Newtonian and non-Newtonian representation of blood in a distal end-to-side vascular bypass graft anastomosis, Med. Eng. Phys. 28, 70-74 https://doi.org/10.1016/j.medengphy.2005.04.001
  75. Owens, R. G., 2006, A new microstructure-based constitutive model for human blood, J. Non-Newtonian Fluid Mech. 140, 57-70
  76. Pal, R., 2003, Rheology of concentrated suspensions of deformable elastic particles such as human erythrocytes, J. Biomech. 36, 981-989 https://doi.org/10.1016/S0021-9290(03)00067-8
  77. Pal, R. and E. Rhodes, 1989, Viscosity/concentration relationships for emulsions, J. Rheol. 33, 1021-1045 https://doi.org/10.1122/1.550044
  78. Phillips, R. J., R. C. Armstrong, R. A. Brown, A. L. Graham and Abbott, J.R., 1992, A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration, Phys. Fluid. 4, 30-40 https://doi.org/10.1063/1.858498
  79. Picart, C., J-M. Piau, H. Galliard and P. Carpentier, 1998a, Human blood shear yield stress and its hematocrit dependence, J. Rheol. 42, 1-12 https://doi.org/10.1122/1.550883
  80. Picart, C., J. M. Piau, H. Galliard and P. Carpentier, 1998b, Blood low shear rate rheometry: influence of fibrinogen level and hematocrit on slip and migrational effects, Biorheology 35, 335-353 https://doi.org/10.1016/S0006-355X(99)80015-8
  81. Popel A. S., and P. C. Johnson, 2005, Microcirculation and hemorheology, Annu. Rev. Fluid Mech. 37, 43-69 https://doi.org/10.1146/annurev.fluid.37.042604.133933
  82. Quemada, D., 1978, Rheology of concentrated disperse systems II. A model for non-Newtonian shear viscosity in steady flows, Rheol. Acta 17, 632-642 https://doi.org/10.1007/BF01522036
  83. Rajagopal, K. R. and A. R. Srinivasa, 2000, A thermodynamic frame work for rate type fluid models, J. Non-Newtonian Fluid Mech. 88, 207-227 https://doi.org/10.1016/S0377-0257(99)00023-3
  84. Rampling, M. W., H. J. Meiselman, B. Neub and O. K. Baskurt, 2004, Influence of cell-specific factors on red blood cell aggregation, Biorheology 41, 91-112
  85. Rao, M. A., 1999, Rheology of fluids and semisolid foods: principles and applications, Springer - Verlag
  86. Richardson, E. G., 1933, Uber die viskosität von emulsionen, Kolloid-Z 65, 32-37 https://doi.org/10.1007/BF01428855
  87. Rojas, H. A. G., 2007, Numerical implementation of viscoelastic blood flow in a simplified arterial geometry, Med. Eng. Phys. 29, 491-496 https://doi.org/10.1016/j.medengphy.2006.07.002
  88. Roscoe, R., 1952, The viscosity of suspensions of rigid spheres, Br. J. Appl. Phys. 3, 267-269 https://doi.org/10.1088/0508-3443/3/8/306
  89. Rovedo, C. O., P. E. Viollaz and C. Suarez, 1991, The effect of pH and temperature on the rheological behavior of Dulce de leche, a typical dairy Argentine product, J. Dairy Sci. 74, 1497-1502 https://doi.org/10.3168/jds.S0022-0302(91)78309-4
  90. Schmid-Schonbein, H. and R. Wells, 1969, Fluid drop-like transition of erythrocytes under shear, Science 165, 288-291 https://doi.org/10.1126/science.165.3890.288
  91. Schramm, L. L., 2005, Emulsions, foams, and suspensions: fundamentals and applications, Wiley-VCH
  92. Sharan, M. and A. S. Popel, 2001, A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall, Biorheology 38, 415-428
  93. Sibree, J. O., 1931, The viscosity of emulsions: part II, Trans. Faraday Soc. 27, 161-176 https://doi.org/10.1039/tf9312700161
  94. Snabre, P. and P. Mills, 1996, II. Rheology of weakly flocculated suspensions of viscoelastic particles, J. Phys. III 6, 1835-1855 https://doi.org/10.1051/jp3:1996216
  95. Steffe, J. F., 1996, Rheological methods in food process engineering, 2nd ed. Freeman Press
  96. Steinman, D. A., 2002, Image-based computational fluid dynamics modeling in realistic arterial geometries, Ann. Biomed. Eng. 30, 483-497 https://doi.org/10.1114/1.1467679
  97. Steinman, D. A., 2004, Image-based computational fluid dynamics: a new paradigm for monitoring hemodynamics and atherosclerosis, Curr. Drug Targets Cardiovasc. Haematol. Disord. 4, 183-197 https://doi.org/10.2174/1568006043336302
  98. Steinman, D. A. and C. A. Taylor, 2005, Flow imaging and computing: large artery hemodynamics, Ann. Biomed. Eng. 33, 1704-1709 https://doi.org/10.1007/s10439-005-8772-2
  99. Sugiura, Y., 1988, A method for analyzing non Newtonian blood viscosity data in low shear rates, Biorheology 25, 107-112 https://doi.org/10.3233/BIR-1988-251-217
  100. Taylor, G. I., 1932, The viscosity of a fluid containing small drops of another fluid, Proc. Roy. Soc. Lond. A 138, 41-48 https://doi.org/10.1098/rspa.1932.0169
  101. Thomas, D. G., 1965, Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles, J. Colloid Interface Sci. 20, 267-277 https://doi.org/10.1016/0095-8522(65)90016-4
  102. Thurston, G. B., 1972, Viscoelasticity of human blood, Biophys. J. 12, 1205-1217 https://doi.org/10.1016/S0006-3495(72)86156-3
  103. Thurston, G. B., 1979, Rheological parameters for the viscosity, viscoelasticity, and thixotropy of blood, Biorheology 16, 149-162 https://doi.org/10.3233/BIR-1979-16303
  104. Thurston, G. B., N. M. Henderson and M. Jeng, 2004, Effects of erythrocytapheresis transfusion on the viscoelasticity of sickle cell blood, Clin. Hemorheol. Micro. 30, 61-75
  105. Thurston, G. B. and N. M. Henderson, 2006, Effects of flow geometry on blood viscoelasticity, Biorheology 43, 729-746
  106. Toda, K. and H. Furuse, 2006, Extension of Einstein's viscosity equation to that for concentrated dispersions of solutes and particles, J. Biosci. Bioeng. 102, 524-528 https://doi.org/10.1263/jbb.102.524
  107. Valencia, A., A. Zarate, M. Galvez and L. Badilla, 2006, Non- Newtonian blood flow dynamics in a right internal carotid artery with a saccular aneurysm, Int. J. Numer. Meth. Fluid 50, 751-764 https://doi.org/10.1002/fld.1078
  108. van de Vosse, F. N., J. de Hart, C. H. G. A. van Oijen, D. Bessems, T. W. M. Gunther, A. Segal, B. J. B. M. Wolters, J. M. A. Stijnen and F. P. T. Baaijens, 2003, Finite-element-based computational methods for cardiovascular fluid-structure interaction, J. Eng. Math. 47, 335-368 https://doi.org/10.1023/B:ENGI.0000007985.17625.43
  109. Vand, V., 1948, Viscosity of solutions and suspensions. 1. Theory, J. Phys. Colloid Chem. 52, 277-299 https://doi.org/10.1021/j150458a001
  110. Vocadlo, J. J., 1976, Role of some parameters and effective variables in turbulent slurry flow, Proceedings of the hydro- transport 4 conference, BHRA, Cranfield, U.K., Paper D4, 49-62
  111. Wang, X., J. F. Stoltz, 1994, Characterization of pathological blood with a new rheological relationship, Clin. Hemorheol. 14, 237-245
  112. Wildemuth, C. R. and M. C. Williams, 1984, Viscosity of suspensions modeled with a shear-dependent maximum packing fraction, Rheol. Acta 23, 627-635 https://doi.org/10.1007/BF01438803
  113. Yeleswarapu, K. K., M. V. Kameneva, K. R. Rajagopal and J. F. Antaki, 1998, The flow of blood in tubes: theory and experiment, Mech. Res. Comm. 25, 257-262 https://doi.org/10.1016/S0093-6413(98)00036-6
  114. Zhang, J., P. C. Johnson and A. S. Popel, 2007, An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows, Phys. Biol. 4, 285-295 https://doi.org/10.1088/1478-3975/4/4/005
  115. Zhang, J., P. C. Johnson and A. S. Popel, 2008, Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method, J. Biomech. 41, 47-55 https://doi.org/10.1016/j.jbiomech.2007.07.020
  116. Zhang, J .B. and Z. B. Kuang, 2000, Study on blood constitutive parameters in different blood constitutive equations, J. Biomech. 33, 355-360 https://doi.org/10.1016/S0021-9290(99)00101-3
  117. Zydney, A. L., J. D. Oliver and C. K. Colton, 1991, A constitutive equation for the viscosity of stored red blood cell suspensions: effect of hematocrit, shear rate, and suspending phase, J. Rheol. 35, 1639-1680 https://doi.org/10.1122/1.550249