Zero-Forcing 기반의 BLAST 채널 용량

Channel Capacity of BLAST based on the Zero-Forcing criterion

  • 이흔철 (고려대학교 전기전자전파공학부 무선통신연구실) ;
  • 김희진 (고려대학교 전기전자전파공학부 무선통신연구실) ;
  • 이인규 (고려대학교 전기전자전파공학부 무선통신연구실)
  • 발행 : 2008.12.25

초록

본 논문에서는 신호 대 잡음 비의 관점에서 Zero-Forcing 기반의 BLAST(Bell Labs Layered Space-Time) 구조의 채널 capacity를 점근적으로 분석하고자 한다. MIMO 채널 capacity에 관한 새로운 관계를 소개하고, ZF에 기반한 간섭 무효화를 수행할 때 DBLAST(Diagonal BLAST)에 의해 MIMO 채널의 하한값에 이름을 증명한다. 채널 capacity의 확률 밀도 함수의 정확한 최종식을 분석하고, 각 계층의 채널 capacity의 점근적 현상에 기반한 점근적 ergodic capacity의 최종식을 BLAST에서 유도한다. 본 논문에서 다뤄진 분석에 의해 MIMO 채널의 capacity 현상에 대한 통찰할 수 있다. 모의 실험의 결과를 통해서, 본 논문에서 다뤄진 광범위한 안테나 배열 사이즈에 대한 분석의 타당성과 정확성을 보여주고자 한다.

In this paper, we present an asymptotical analysis of channel capacity of Bell labs layered space-time (BLAST) architectures based on a zero-forcing (ZF) criterion in the sense of signal-to-noise ratio (SNR). We begin by introducing a new relationship related to multi-input multi-output (MIMO) channel capacity. We prove that Diagonal Bell Labs Space-Time (DBLAST) attains the lower bound for MIMO channels when interference nulling is carried out based on the ZF-criterion. An exact closed-form expression for the probability density function of the channel capacity is analyzed. Based on the asymptotic behavior of the channel capacity of each layer, closed-form expressions for the asymptotic ergodic capacity are derived for BLAST. Based on the analysis presented in this paper, we gain an insight on the channel capacity behavior for a MIMO channel. Computer simulation results have verified the validity and accuracy of the proposed analysis for a wide range of antenna array sizes.

키워드

참고문헌

  1. G. J. Foschini and M. Gans, "On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas," Wireless Personal Communications, vol. 6, pp. 311-335, March 1998 https://doi.org/10.1023/A:1008889222784
  2. I. E. Telatar, "Capacity of multi-antenna Gaussian channels," Eur. Trans. Telecom., vol. 10, pp. 585-595, November 1999 https://doi.org/10.1002/ett.4460100604
  3. G. J. Foschini, "Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas," Bell Labs. Tech. J., vol. 1, pp. 41-59, 1996 https://doi.org/10.1002/bltj.2015
  4. S. L. Ariyavisitakul, "Turbo Space-Time Processing to ImproveWireless Channel Capacity," IEEE Transactions on Communications, vol. 48, pp. 1347-1359, August 2000 https://doi.org/10.1109/26.864172
  5. G. J. Foschini, D. Chizhik, M. J. Gans, C. Papadias, and R. A. Valenzuela, "Analysis and Performance of Some Basic Space-Time Architectures," IEEE Journal on Selected Areas in Communications, vol. 21, pp. 303-320, April 2003 https://doi.org/10.1109/JSAC.2003.809456
  6. N. Jindal and A. J. Goldsmith, "Capacity and Optimal Power Allocation for Fading Broadcast Channels with Minimum Rates," IEEE Transactions on Information Theory, vol. 49, pp. 2895-2909, November 2003 https://doi.org/10.1109/TIT.2003.819328
  7. A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes. Fourth Edition, McGraw-Hill, 2002
  8. I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products. Sixth Edition, Academic Press, A Harcourt Science and Technology Company, 2000
  9. J. Hansen and H. Bolcskei, "A Geometrical Investigation of the Rank-1 Ricean MIMO Channel at High SNR," in Proc. ISIT 2004, p. 64, July 2004
  10. G. Strang, Linear Algebra and its Applications. Third Edition, Thomson Learning, 1988