DOI QR코드

DOI QR Code

Evaluation of Hydraulic Conductivity of Slurry-wall-type Vertical Cutoff Wall with Consideration of Filter Cake

필터케이크(filter cake)를 고려한 슬러리월 연직차수벽의 현장투수계수 평가

  • Nguyen, The Bao (Department of Civil, Environmental, and Architectural Engrg., Korea Univ.) ;
  • Lee, Chul-Ho (Department of Civil, Environmental, and Architectural Engrg., Korea Univ.) ;
  • Choi, Hang-Seok (Department of Civil, Environmental, and Architectural Engrg., Korea Univ.) ;
  • Kim, Sang-Gyun (Chungsuk Eng.)
  • 웽테바오 (고려대학교 건축사회환경공학과) ;
  • 이철호 (고려대학교 건축사회환경공학과) ;
  • 최항석 (고려대학교 건축사회환경공학과) ;
  • 김상균 (청석엔지니어링)
  • Published : 2008.11.30

Abstract

In constructing a slurry trench cutoff wall, bentonite-water slurry is used to secure the stability of sidewalls during excavation before the wall is completed by backfilling. Unexpectedly, a thin but relatively impermeable layer called filter cake can be formed on the excavation surface, which significantly influences the result of slug test analysis in the cutoff wall if not considered. This study is to examine the effect of filter cake on evaluating hydraulic conductivity of the vertical cutoff wall through slug test analysis with the aid of the verified numerical program Slug_3D. The no-flux boundary conditions were adopted in Slug_3D to simulate the filter cake on the interface between the wall and the natural soil. A new set of type curves were built for applying the type curve method. New modification factors were obtained for using the modified line-fitting method. With consideration of filter cake, the type curve method and the modified line-fitting method were adopted to reanalyze the case study taken from EMCON (1995). The previous results achieved by Choi and Daniel (2006) without consideration of filter cake were compared with the present results obtained in this paper. The comparison emphasizes the necessity of considering filter cake when analyzing slug test results in vertical cutoff walls.

슬러리월 연직차수벽 시공시, 지반을 트렌치 형태로 굴착하고, 굴착시공 중 굴착면 붕괴에 대한 안정성을 유지하기 위하여 벤토나이트와 물을 혼합한 슬러리를 트렌치에 채운다. 이렇게 채워진 벤토나이트 슬러리로 인하여 필터케이크(filter cake)이라 불리는 얇고 투수성이 낮은 층이 트렌치벽 표면에 형성되며, 슬러리가 제거 된 이후에도 굴착면에 잔존하여 연직차수벽에서의 순간변위시험(slug test) 해석 결과에 중요한 영향을 미친다. 본 연구에서는 기존에 개발된 수치해석 프로그램 Slug-3D를 수정하여 순간변위시험 해석시 필터케이크의 영향을 고려하는 방법을 제시하고 이를 통하여 정확한 연직차수벽의 투수계수를 산출하도록 하였다. 필터케이크의 영향을 고려하기 위하여 Slug-3D에서는 차수벽과 토양층의 경계면에 불투수조건(no-flux)을 경계조건으로 설정하여 해석을 수행하였다 또한 투수계수 산정에서 기존의 타입커브법(type curve method)을 이용하기 위하여 개선된 type curve를 도출하였고, 선형 커브피팅법(line-fitting method)를 필터케이크가 존재하는 연직차수벽에 적용할 수 있도록 수정 보완하였다. 본 논문에서 제안된 필터케이크를 고려한 해석방법은 EMCON(1995)에 의해 수행된 현장시험 결과의 재해석을 통하여 타당성을 검토하였다. 또한, 본 연구에서 얻어진 결과를 Choi and Daniel(2006)에 의해 수행된 필터케이크가 존재하지 않는 경우의 순간변위시험 해석결과와 비교를 통해 필터케이크 고려가 반드시 필요함을 보여준다.

Keywords

References

  1. 유동주, 오명학, 김용성, 박준범 (2006), "벤토나이트 슬러리의 전기적 특성에 대한 영향인자 분석", 한국지반공학회 논문집, 제 22권, 제10호, pp.21-32
  2. 이용수, 조진우, 유준, 정하익 (2007), "산업부산물 혼합 연직차 수벽체의 현장 적용성 평가", 한국지반공학회 봄학술 발표회, 고 려대학교, pp.862-867
  3. 정하익 (1998), 지반환경공학, 도서출판 유림
  4. 최항석, 이철호, 웽 테 바오 (2007), "압축성이 큰 지반에서 순간 변 위시험 해석을 위한 선형 커브피팅법(Linear Curve Fitting Methods) 의 적용", 한국지반공학회 논문집, 제23권 11호, pp.1-9
  5. 최항석, Daniel, D.E. (2006), "순간 변위시험(Slug Test)을 이용한 연직차수벽의 투수계수 산정시 수정된 Linear Curve Fitting 방법 의 적용", 한국지반공학회 봄학술발표회, 한양대학교, pp.338-347
  6. 한국지반공학회 (2004), 지반환경, 구미서관
  7. Bouwer, H., and Rice, R. C. (1976), "A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifer with Completely or Partially Penetrating Wells", Water Resour. Res., 12(3), pp.423-428 https://doi.org/10.1029/WR012i003p00423
  8. Britton, J. P. (2001), "Soil-bentonite Cutoff Walls: Hydraulic Conductivity and Contaminant Transport", Ph.D. thesis, Virginia Polytechnic Institute & State Univ., Blacksburg, Va
  9. Britton, J. P., Filz, G. M., and Herring, W. E. (2004), "Measuring the Hydraulic Conductivity of Soil-bentonite Backfill", J. Geotech. Geoenviron. Eng., 130(12), pp.1250-1258 https://doi.org/10.1061/(ASCE)1090-0241(2004)130:12(1250)
  10. Choi, H. (2002), "Analysis of slug tests to determine hydraulic conductivity of vertical cutoff walls", Ph.D. thesis, Univ. of Illinois, Urbana-Champaign, III
  11. Choi, H. (2007), "Numerical Model for Analyzing Slug Tests in Vertical Cutoff Walls", J. Geotech. Geoenviron. Eng., 133(10), pp.1249-1258 https://doi.org/10.1061/(ASCE)1090-0241(2007)133:10(1249)
  12. Choi, H., and Daniel, D. E. (2006a), "Slug Test Analysis in Vertical Cutoff Walls. I: Analysis Methods", J. Geotech. Geoenviron. Eng., 132(4), pp. 429-438 https://doi.org/10.1061/(ASCE)1090-0241(2006)132:4(429)
  13. Choi, H., and Daniel, D. E. (2006b), "Slug Test Analysis in Vertical Cutoff Walls. II: Applications", J. Geotech. Geoenviron. Eng., 132(4), pp.439-447 https://doi.org/10.1061/(ASCE)1090-0241(2006)132:4(439)
  14. Daniel, D. E., and Choi, H. (1999), "Hydraulic Conductivity Evaluation of Vertical Barrier Walls", Geo-engineering for underground facilities, G. Fernandez and R. A. Bauev, eds., ASCE, Reston, Va., pp.140-161
  15. Dax, A. (1987), "A Note on the Analysis of Slug Tests", J.Hydrol., 91, pp.153-177 https://doi.org/10.1016/0022-1694(87)90134-X
  16. D'Appolonia, D. J. (1980), "Soil-bentonite Slurry Trench Cutoffs", Journal of Geotechnical Engineering, ASCE. 106(4), pp.399-417
  17. EMCON. (1995), M-11/15, M-17/21, and M-26/E-29 Slurry Walls Post Construction Performance Evaluation, West Contra Costa Sanitary Landfill, Richmond, Ca
  18. Filz, G. M., Boyer, R. D., and Davidson, R. R. (1997), "Bentonitewater Slurry Rheology and Cutoff Wall Trench Stability", Proc., In Situ Remediation of the Geoenvironment, GSP No. 71, J. C. Evans, eds., pp.139-153
  19. Filz, G. M., Henry, L. B., Heslin, G. M., and Davidson, R. R. (2001), "Determining Hydraulic Conductivity of Soil-Bentonite Using the API Filter Press", Geotechnical Testing Journal, ASTM, 24(1), pp.61-71 https://doi.org/10.1520/GTJ11282J
  20. Ferris, J. G. (1959), Groundwater, John Wiley & Sons, NewYork
  21. Freeze, R. A., and Cherry, J. A. (1979), Groundwater, Prentice-Hall, Englewood Cliffs, N.J
  22. Henry, L. B., Filz, G. M., and Davidson, R. R. (1998), "Formation and Properties of Bentonite Filter Cakes", Proc., Filtration and Drainage in Geotechnical/Geoenvironmental Engineering, GSP No. 78, ASCE, Reston, Va., pp.69-88
  23. Hvorslev, M. J. (1951), "Time Lag and Soil Permeability in Groundwater Observation", Bulletin No. 36, Waterways ExperimentStation, United States Army Corps of Engineers, Vicksburg, Miss
  24. Hyder, Z. (1994), "Analysis of Slug Tests in Partially Penetrating Wells", Ph.D. thesis, Univ. of Kansas, Lawrence, US
  25. Hyder, Z. Butler, J. J., McElwee, C. D., and Liu, W. (1994), "Slug Tests In Partially Penetrating Wells", Water Resour. Res., 30(11), pp.2945-2957 https://doi.org/10.1029/94WR01670
  26. Lee, T. and Benson, C. (2000), "Flow Past Bench-Scale Vertical Ground-Water Cutoff Walls", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 123(8), pp.511-520
  27. Manassero, M. (1994), "Hydarulic Conductivity Assessment of Slurry Wall Using Piezocone Test", Journal of Geotechnical Engineering, ASCE, 120(10), pp.1725-1745 https://doi.org/10.1061/(ASCE)0733-9410(1994)120:10(1725)
  28. Nash, K. L. (1974), "Stability of Trenches Filled with Fluids", Journal of the Construction Division 100(CO4), ASCE, pp.533-542
  29. Nguyen, T. B. (2007), "Slug Test Analysis in Vertical Cutoff Walls with Consideration of Filter Cake", Master thesis, Korea University, Seoul, South Korea
  30. Ryan, C. R. (1987), "Vertical Barriers in Soil for Pollution Containment", Geotechnical Practice for Waste Disposal '87, ASCE, pp.182-204
  31. Sherard, J. L., Dunnigan, L. P., and Talbot, J. R. (1984), "Filters for Silts and Clays", Journal of Geotechnical Engineering, ASCE, 110(6), pp.684-700 https://doi.org/10.1061/(ASCE)0733-9410(1984)110:6(684)
  32. Teeter, R. M., and Clemence, S. P. (1986), "In-place Permeability Measurement of Slurry Trench Cutoff Wall", Proc., In Situ' 86, Use of In Situ Tests in Geotechnical Engineering, GSP No.6, pp.1049-1061
  33. Xanthakos, P. P. (1994), Slurry Walls as Structural System, McGraw-Hill, New York