DOI QR코드

DOI QR Code

Polymorphisms in RAS Guanyl-releasing Protein 3 are Associated with Chronic Liver Disease and Hepatocellular Carcinoma in a Korean Population

  • Oh, Ah-Reum (Medical Genomics Laboratory, Graduate School of Life Science and Biotechnology, Pochon CHA University) ;
  • Lee, Seung-Ku (Medical Genomics Laboratory, Graduate School of Life Science and Biotechnology, Pochon CHA University) ;
  • Kim, Min-Ho (Medical Genomics Laboratory, Graduate School of Life Science and Biotechnology, Pochon CHA University) ;
  • Cheong, Jae-Youn (Department of Gastroenterology, Genomic Research Center for Gastroenterology, Ajou University School of Medicine) ;
  • Cho, Sung-Won (Department of Gastroenterology, Genomic Research Center for Gastroenterology, Ajou University School of Medicine) ;
  • Yang, Kap-Seok (Macrogen Inc.) ;
  • Kwack, Kyu-Bum (Medical Genomics Laboratory, Graduate School of Life Science and Biotechnology, Pochon CHA University)
  • Published : 2008.12.31

Abstract

RAS guanyl-releasing protein 3 (RasGRP3), a member of the Ras subfamily of GTPases, functions as a guanosine triphosphate (GTP)/guanosine diphosphate (GDP)-regulated switch that cycles between inactive GDP- and active GTP-bound states during signal transduction. Various growth factors enhance hepatocellular carcinoma (HCC) proliferation via activation of the Ras/Raf-1/extracellular signal-regulated kinase (ERK) pathway, which depends on RasGRP3 activation. We investigated the relationship between polymorphisms in RasGRP3 and progression of hepatitis B virus (HBV)-infected HCC in a Korean population. Nineteen RasGRP3 SNPs were genotyped in 206 patients with chronic liver disease (CLD) and 86 patients with HCC. Our results revealed that the T allele of the rs7597095 SNP and the C allele of the rs7592762 SNP increased susceptibility to HCC (OR=1.55, p=0.04 and OR=1.81${\sim}$2.61, p=0.01${\sim}$0.03, respectively). Moreover, patients who possessed the haplotype (ht) 1 (A-T-C-G) or diplotype (dt) 1 (ht1/ht1) variations had increased susceptibility to HCC (OR=1.79${\sim}$2.78, p=0.01${\sim}$0.03). In addition, we identified an association between haplotype1 (ht1) and the age of HCC onset; the age of HCC onset are earlier in ht1 +/+ than ht1 +/- or ht1 -/- (HR=0.42${\sim}$0.66, p=0.006${\sim}$0.015). Thus, our data suggest that RasGRP3 SNPs are significantly associated with an increased risk of developing HCC.

Keywords

References

  1. Aiba, Y., Oh-hora, M., Kiyonaka, S., Kimura, Y., Hijikata, A., Mori, Y., and Kurosaki, T. (2004). Activation of RasGRP3 by phosphorylation of Thr-133 is required for B cell receptor- mediated Ras activation. Proc. Natl. Acad. Sci. U. S. A. 101, 16612-16617 https://doi.org/10.1073/pnas.0407468101
  2. Arbuthnot, P., and Kew, M. (2001). Hepatitis B virus and hepatocellular carcinoma. Int. J. Exp. Pathol. 82, 77-100. https://doi.org/10.1111/j.1365-2613.2001.iep178.x
  3. Bar-Sagi, D., and Hall, A. (2000). Ras and Rho GTPases: a family reunion. Cell 103, 227-38 https://doi.org/10.1016/S0092-8674(00)00115-X
  4. Bosch, F.X., Ribe, J., Diaz, M., and Cleries, R. (2004). Primary liver cancer: worldwide incidence and trends. Gastroenterology 127, S5-S16 https://doi.org/10.1053/j.gastro.2004.09.011
  5. Bruix, J., Boix, L., Sala, M., and Llovet, J.M. (2004). Focus on hepatocellular carcinoma. Cancer Cell 5, 215-219 https://doi.org/10.1016/S1535-6108(04)00058-3
  6. Caselmann, W.H. (1998). Pathogenesis of hepatocellular carcinoma. Digestion 59 Suppl 2, 60-63
  7. Cha, C., and Dematteo, R.P. (2005). Molecular mechanisms in hepatocellular carcinoma development. Best Pract. Res. Clin Gastroenterol 19, 25-37 https://doi.org/10.1016/j.bpg.2004.11.005
  8. Coughlin, J.J., Stang, S.L., Dower, N.A., and Stone, J.C. (2005). RasGRP1 and RasGRP3 regulate B cell proliferation by facilitating B cell receptor-Ras signaling. J. Immunol. 175, 7179-84 https://doi.org/10.4049/jimmunol.175.11.7179
  9. Crepieux, P., Kwon, H., Leclerc, N., Spencer, W., Richard, S., Lin, R., and Hiscott, J. (1997). I kappaB alpha physically interacts with a cytoskeleton-associated protein through its signal response domain. Mol. Cell. Biol. 17, 7375-7385 https://doi.org/10.1128/MCB.17.12.7375
  10. Edmondson, H.A., Henderson, B., and Benton, B. (1976). Liver-cell adenomas associated with use of oral contraceptives. N. Engl. J. Med. 294, 470-472 https://doi.org/10.1056/NEJM197602262940904
  11. Greenblatt, M.S., Bennett, W.P., Hollstein, M., and Harris, C.C. (1994). Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54, 4855-4878
  12. Ito, Y., Sasaki, Y., Horimoto, M., Wada, S., Tanaka, Y., Kasahara, A., Ueki, T., Hirano, T., Yamamoto, H., Fujimoto, J., Okamoto, E., Hayashi, N., and Hori, M. (1998). Activation of mitogen-activated protein kinases/extracellular signal-regulated kinases in human hepatocellular carcinoma. Hepatology 27, 951-958 https://doi.org/10.1002/hep.510270409
  13. Jung, H.Y., Park, J.S., Park, Y.J., Kim, Y.J., Kimm, K.C., and Koh, I.S. (2004). HapAnalyzer: minimum haplotype analysis system for association studies. Genomics & Informatics 2, 107-109
  14. Khosravi-Far, R., and Der, C.J. (1994). The Ras signal transduction pathway. Cancer Metastasis Rev. 13, 67-89 https://doi.org/10.1007/BF00690419
  15. Kirk, G.D., Lesi, O.A., Mendy, M., Szymanska, K., Whittle, H., Goedert, J.J., Hainaut, P., and Montesano, R. (2005). 249(ser) TP53 mutation in plasma DNA, hepatitis B viral infection, and risk of hepatocellular carcinoma. Oncogene 24, 5858-5867 https://doi.org/10.1038/sj.onc.1208732
  16. Laurent-Puig, P., and Zucman-Rossi, J. (2006). Genetics of hepatocellular tumors. Oncogene 25, 3778-3786 https://doi.org/10.1038/sj.onc.1209547
  17. Levy-Lahad, E., and Friedman, E. (2007). Cancer risks among BRCA1 and BRCA2 mutation carriers. Br. J. Cancer 96, 11-15 https://doi.org/10.1038/sj.bjc.6603535
  18. Lewis, C.M. (2002). Genetic association studies: design, analysis and interpretation. Brief Bioinform 3, 146-153 https://doi.org/10.1093/bib/3.2.146
  19. Lee, S.K., Kim, H.G., Kang, J.J., Oh, W., Oh, B.E., and Kwack, K. (2007). Characterization of single nucleotide polymorphisms in 55disease-associated genes in a Korean population. Genomics & informatics 5, 152-160
  20. Lorenzo, P.S., Kung, J.W., Bottorff, D.A., Garfield, S.H., Stone, J.C., and Blumberg, P.M. (2001). Phorbol esters modulate the Ras exchange factor RasGRP3. Cancer Res. 61, 943-9
  21. Mitin, N., Rossman, K.L., and Der, C.J. (2005). Signaling interplay in Ras superfamily function. Curr. Biol. 15(14), R563-R574 https://doi.org/10.1016/j.cub.2005.07.010
  22. Nonomura, A., Ohta, G., Hayashi, M., Izumi, R., Watanabe, K., Takayanagi, N., Mizukami, Y., and Matsubara, F. (1987). Immunohistochemical detection of ras oncogene p21 product in liver cirrhosis and hepatocellular carcinoma. Am. J. Gastroenterol. 82, 512-518
  23. Pang, R., Yuen, J., Yuen, M.F., Lai, C.L., Lee, T.K., Man, K., Poon, R.T., Fan, S.T., Wong, C.M., Ng, I.O., Kwong, Y.L., and Tse, E. (2004). PIN1 overexpression and beta- catenin gene mutations are distinct oncogenic events in human hepatocellular carcinoma. Oncogene 23, 4182- 4186 https://doi.org/10.1038/sj.onc.1207493
  24. Park, B.L., Kim, Y.J., Cheong, H.S., Lee, S.O., Han, C.S., Yoon, J.H., Park, J.H., Chang, H.S., Park, C.S., Lee, H.S., and Shin, H.D. (2007). HDAC10 promoter polymorphism associated with development of HCC among chronic HBV patients. Biochem. Biophys. Res. Commun. 363, 776-781 https://doi.org/10.1016/j.bbrc.2007.09.026
  25. Parkin, D.M., Bray, F., Ferlay, J., and Pisani, P. (2001). Estimating the world cancer burden: Globocan 2000. Int. J. Cancer 94, 153-156 https://doi.org/10.1002/ijc.1440
  26. Puthalakath, H., Huang, D.C., O'Reilly, L.A., King, S.M., and Strasser, A. (1999). The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol. Cell. 3, 287-296 https://doi.org/10.1016/S1097-2765(00)80456-6
  27. Rebhun, J.F., Castro, A.F., and Quilliam, L.A. (2000). Identification of guanine nucleotide exchange factors (GEFs) for the Rap1 GTPase. Regulation of MR-GEF by M-Ras-GTP interaction. J. Biol. Chem. 275, 34901-34908 https://doi.org/10.1074/jbc.M005327200
  28. Roberts, D.M., Anderson, A.L., Hidaka, M., Swetenburg, R.L., Patterson, C., Stanford, W.L., and Bautch, V.L. (2004). A vascular gene trap screen defines RasGRP3 as an angiogenesis-regulated gene required for the endothelial response to phorbol esters. Mol. Cell. Biol. 24, 10515-10528 https://doi.org/10.1128/MCB.24.24.10515-10528.2004
  29. Schmidt, C.M., McKillop, I.H., Cahill, P.A., and Sitzmann, J.V. (1997). Increased MAPK expression and activity in primary human hepatocellular carcinoma. Biochem Biophys. Res. Commun. 236, 54-58 https://doi.org/10.1006/bbrc.1997.6840
  30. Shields, J.M., Pruitt, K., McFall, A., Shaub, A., and Der, C.J. (2000). Understanding Ras: 'it ain't over 'til it's over'. Trends Cell Biol. 10, 147-154 https://doi.org/10.1016/S0962-8924(00)01740-2
  31. Tangye, S.G., and Hodgkin, P.D. (2004). Divide and conquer: the importance of cell division in regulating B-cell responses. Immunology 112, 509-520 https://doi.org/10.1111/j.1365-2567.2004.01950.x
  32. Tsuboi, Y., Ichida, T., Sugitani, S., Genda, T., Inayoshi, J., Takamura, M., Matsuda, Y., Nomoto, M., and Aoyagi, Y. (2004). Overexpression of extracellular signal-regulated protein kinase and its correlation with proliferation in human hepatocellular carcinoma. Liver Int. 24, 432-436 https://doi.org/10.1111/j.1478-3231.2004.0940.x
  33. Vojtek, A.B., and Der, C.J. (1998). Increasing complexity of the Ras signaling pathway. J. Biol. Chem. 273, 19925- 19928 https://doi.org/10.1074/jbc.273.32.19925
  34. Wang, Q., Lin, Z.Y., and Feng, X.L. (2001). Alterations in metastatic properties of hepatocellular carcinoma cell following H-ras oncogene transfection. World J. Gastroenterol. 7, 335-339 https://doi.org/10.3748/wjg.v7.i3.335
  35. Wu, L.M., Zhang, F., Xie, H.Y., Xu, X., Chen, Q.X., Yin, S.Y., Liu, X.C., Zhou, L., Xu, X.B., Sun, Y.L., and Zheng, S.S. (2008). MMP2 promoter polymorphism (C-1306T) and risk of recurrence in patients with hepatocellular carcinoma after transplantation. Clin. Genet. 73, 273-278 https://doi.org/10.1111/j.1399-0004.2007.00955.x

Cited by

  1. Association Analysis of SERPINB5 Polymorphisms with HBV Clearance and HCC Occurrence in a Korean Population vol.8, pp.1, 2010, https://doi.org/10.5808/GI.2010.8.1.001