Effect of Water Temperature and Culture Density on Growth and Survival of Juvenile Turbot Scophthalmus maximus during Summer Season

하절기 사육수온 및 밀도가 터봇 Scophthalmus maximus 미성어의 성장과 생존에 미치는 영향

  • 이배익 (국립수산과학원 동해특성화연구센터) ;
  • 남명모 (국립수산과학원 동해특성화연구센터) ;
  • 변순규 (국립수산과학원 동해특성화연구센터) ;
  • 김이청 (국립수산과학원 동해특성화연구센터) ;
  • 이종하 (국립수산과학원 동해특성화연구센터)
  • Published : 2008.11.25

Abstract

Upper temperature tolerance of the turbot Scophthalmus maxim us, one of the popular aquaculture species in European community and China, was evaluated in terms of survival and growth at $20^{\circ}C$, $23^{\circ}C$, $26^{\circ}C$, or $29^{\circ}C$. Best growth was achieved at temperature $20^{\circ}C$ in this experiments. The fish exposed to $20^{\circ}C$ or $23^{\circ}C$ were comparable in survival, condition factor and feed conversion efficiency reminiscent of the latter temperature to be agreeable for the fish. The temperature over $23^{\circ}C$ appeared to be the temperatures beyond the fish can tolerate. For instance, the fish exposed to 26 showed mortality of 60.9% by day 60; none of the fish exposed to $29^{\circ}C$ survived beyond day 7. Culture densities between 80 and $200\;fish/m^2$ did not influence the survival, growth, condition factor and specific growth rate of the fish. The final production of the culture density experiment was $10\;kg/m^2$ on average. These results imply that the location where water temperature remains lower than $25^{\circ}C$ during summer can be a candidate site for the turbot aquaculture.

유럽과 중국에서 양식 대상종으로 각광을 받고 있는 터봇 Scophthalmus maximus의 하계 국내 사육 가능성을 평가하고자 사육수온과 밀도에 대한 성장 특성을 비교하였다. 수온별 실험 결과 성장은 $20^{\circ}C$에서 가장 빨랐으며, 생존율은 $20^{\circ}C$$23^{\circ}C$ 모두 98.4%, 비만도는 $3.96{\sim}4.14$, 사료계수는 $0.84{\sim}0.89$로 차이가 없어 $23^{\circ}C$에서도 사육이 양호하였다. 수온 $26^{\circ}C$에서는 20일까지 일간성장률이 양호하였으며 50일 이후 폐사개체가 증가하여 60일에는 60.9%를 나타내었다. $29^{\circ}C$에서는 실험시작 7일 후에 전개체가 폐사되었다. 밀도별 사육실험 결과 생존율은 200마리/$m^2$ 실험구가 99.4%, 160 마리/ 실험구가 100%, 120 마리/실험구가 97.9%, 80 마리/$m^2$ 실험구가 98.4%로 각 실험구 모두 양호한 생존율을 보였다. 사육실험 결과 200 마리/$m^2$ 실험구는 다른 저밀도 실험 실험구와 비만도, 일간성장률, 사료계수의 차이가 없었고, 최종사육밀도는 $10\;kg/m^2$로 넙치보다 고밀도로 사육이 가능함이 확인되었다. 이상의 결과로부터 하절기에 $25^{\circ}C$ 이상의 수온이 거의 나타나지 않는 울진 이북 동해안 지역은 터봇을 사육하는데 적합한 수온 조건을 지니고 있으며, 수온 $26^{\circ}C$가 20일 이내인 지역이라면 터봇 종묘를 양성하는데 지장이 없을 것으로 사료되었다.

Keywords

References

  1. Brett, J. R., 1979. Environmental factors and growth. (in) W. S. Hoar, D. J. Randall, J. R Brett (eds.), Fish Physiology, vol. 8, Academic Press, New York, pp. 599−675
  2. Borges, M.-T., M. Aurora and P. M. L. Castro, 2003. Performance of outdoor seawater treatment systems for recirculation in an intensive turbot (Scophthalmus maximus) farm. Aquaculture International, 11, 557−570
  3. Gaumet, F., G. Bouef, A, Servre, A. L. Roux and N. Mayyer-Gostan. 1995. Effects of salinity on the ionic balance and growth of juvenile turbot. J. Fish Biol., 47, 865−876
  4. Gibson, S. and I. A. Johnston, 1995. Temperature and development in larvae of the turbot Scophthalmus maximus. Mar. Biol., 124, 17−25
  5. Ham, E. H. V., M. H. G. Berntssen, A. K. Imsland, A. C. Parpoura, S. E. W. Bonga and S. O. Stefansson, 2003. The influence of temperature and ration on growth, feed conversion, body composition and nutrient retention of juvenile turbot (Scophthalmus maximus). Aquacuture, 217, 547−558
  6. Imsland, A. K., A. Folkvord and S. O. Stefansson, 1995. Growth, oxygen consumption and activity of juvenile turbot (Scophthalmus maximus) reared under different temperatures and photoperiods. Neth. J. Sea Res., 34, 149−159
  7. Imsland, A. K., L. M. Sunde, A. Folkvord and S. O. Stefansson, 1996. The interaction between temperature and size on growth of juvenile turbot (Scophthalmus maximus). J. Fish Biol., 49, 926−940
  8. Imsland, A. K., A. Foss, G. Nævdal, T. Cross, S. W. Bonga, E. V. Ham and S. O. Stefansson, 2000. Countergradient variation in growth and food conversion efficiency of juvenile turbot. J. Fish Biol., 57, 1213−1226
  9. Imsland, A. K., A. Foss, S. Gunnarsson., M. Berntssen, R. Fitzgerald, S. W. Bonga, E. V. Ham, G. Nvdal and S. O. Stefansson, 2001a. The interaction of temperature and salinity on growth and food conversion in juvenile turbot (Scophthalmus maximus). Aquaculture, 198, 353−367
  10. Imsland, A. K., I. Szucs, F. Pekar, S. Blokhin and I. Csavas, 2001b. Aquaculture development trends in Europe. Aquaculture in the third millennium Bangkok Thailand NACA 2001, 397−416
  11. Imsland, A. K., S. Gunnarsson, A. Foss and S. O. Stefansson, 2003. Gill $Na^+$, $K^+-ATPase$ activity, plasma chloride and osmolality in juvenile turbot (Scophthalmus maximus) reared at different temperatures and salinities. Aquaculture, 218, 671−683
  12. Imsland, A. K., E. Schram, B. Roth, R. Schelvis-Smit and K. Kloet, 2007. Improving growth in juvenile turbot (Scophthalmus maximus Rafinesque) by rearing fish in switched temperature regimes. Aquacuture Int., 403−407
  13. Jobling, M., 1994. Fish Bioenergetics. Chapman & Hall, London, 309 pp
  14. Jones, A., J. A. G. Brown, M. T Douglas, S. J. Thompson and R. J. Whitfield, 1981. Progress towards developing methods for the intensive farming of turbot (Scophthalmus maximus) in cooling water from a nuclear power station. (in) K. Tiews (ed.), Proceedings of World Symposium on Aquaculture in heated Effluents and Recircuration Systems. F. A. O, Technical Paper, Paris, pp. 481−496
  15. Karas, P. and V. Klingsheim, 1997. Effects of temperature and salinity on embryonic development of turbot (Scophthalmus maximus L.) from the North Sea, and comparisons with Baltic populations. Helgolander Meeresunters, 51, 241−247
  16. Kim, W. S., K. H. Kim, C. S. Kim, Y. J. Kim, S. J. Jung, T. S. Jung, S. I Kitamura, M. Yoshimizu and M. J. Oh, 2003. The infection of irido-like virus in cultureed turbot. J. Fish Pathol., 16, 153−159
  17. Kinghorn, B., 1983. Genetic variation in food conversion efficiency and growth in rainbow trout. Aquaculture, 32, 141−155
  18. Kuhlmann, D. and G. Quantz, 1980. Some effects of temperature and salinity on the embryonic development and incubation of the turbot, Scophthalmus maximus from the Baltic Sea. Meereforschung, 28, 172−178
  19. Labatut, R. A. and J. F. Olivares, 2004. Culture of turbot (Scophthalmus maximus) juveniles using shallow raceways tank and recirculation. Aquacultural Eng., 32, 113−127
  20. Liewes, E. W, 1984. Culture, feeding and diseases of commercial flatfish species. A. A. Balkema, Rotterdam, pp. 3−4
  21. Lei, J., Q. Men, Y. Wang and B. Wang, 2002. Review of green house deep well seawaterindustrialized culture pattern of turbot (Scophthalmus maximus). Mar. Fish. Res., 23, 1−7
  22. Ma, A., C. Chen, J. Lei, S. Chen, Z. Zhuang and Y. Wang, 2006. Turbot Scophthalmus maximus stocking density on growth, pigmentation and feed conversion. Chinese J. of Oceanology and Limnology, 24, 307−312
  23. Nijhof, M, 1994. Research on nutrition and growth in the culture of post larval turbot (Scophthalmus maximus). European Aquaculture Society, Oostende, Belgium, 21−41
  24. Person-Le Ruyet J., F. Baudin-Laurencin, N. Devauchelle, R. Mhailler, J.-L. Nicolas, J. Robin and J. Guillaume, 1991. Culture of turbot (Scophthalmus maximus). Finfish aquaculture, vol. 2, CRC Press, Boca Raton, 21−41
  25. Strand H. K. and V. Oiestad, 1997. Growth and the effect of grading of turbot in a shallow raceway system. Aquaculture International, 5, 397−406
  26. Sun, Z. and Y. Yan, 2003. Experiment on industrial turbot (Scophthalmus maximus). Mar. Fish. Res., 24, 6−10
  27. Sunde, L. M., A. K. Imsland, A. Folkvord and S. O. Stefansson, 1998. Effects of size grading on growth and survival of juvenile turbot at two temperatures. Aquacuture International, 6, 19−32
  28. Waller, U., 1992. Factors influencing routine oxygen consumption in turbot, Scophthalmus maximus. J. Appl. Ichthyol., 8, 62−71 https://doi.org/10.1111/j.1439-0426.1992.tb00694.x
  29. 이종관, 2002. Turbot 이식기반조사. 양식 대상 외래종의 개발을 위한 국외 양식실태 조사. 국립수산과학원, 38 pp
  30. 국립수산과학원, 2006. 넙치 양식 표준 지침서. 도서출판 해인, 33 pp