Effects of Salinity Stress on the Composition of Free Amino Acids of the Pacific abalone Haliotis discus discus

염분 스트레스가 둥근전복 Haliotis discus discus의 유리아미노산 조성에 미치는 영향

  • Yang, Hyun-Sung (School of Applied Marine Science, College of Ocean Science, Cheju National University) ;
  • Park, Kyung-Il (Department of Aquatic Life Medicine, College of Ocean Science, Kunsan National University) ;
  • Hong, Choong-Hee (Marine Affairs and Fisheries Policy Division) ;
  • Choi, Kwang-Sik (School of Applied Marine Science, College of Ocean Science, Cheju National University)
  • 양현성 (제주대학교 해양과학대학 해양과학부) ;
  • 박경일 (군산대학교 해양과학대학 수산생명의학과) ;
  • 홍충희 (제주특별자치도 수산정책과) ;
  • 최광식 (제주대학교 해양과학대학 해양과학부)
  • Published : 2008.11.25

Abstract

Changes in 13 free amino acids (FAA) of Haliotis discus discus exposed to various salinities were investigated using a high performance liquid chromatography (HPLC). Taurine, glycine and alanine are three major contributors to the total FAA in the gill tissues of H. discus discus. Concentration of taurine was 114 imol/g dry tissue weights accounting for 76.64% of total FAA in H. discus discus. Levels of most FAAs in H. discus discus exposed to low and high salinities for 24 h decreased dramatically. Taurine concentration was slightly increased in the samples exposed to 20 psu and 25 psu for 48 h, and greatly increased after 120 h exposure. After 48 hrs exposure to 20 psu, 25 psu, 30 psu and 40 psu, methionine in H. discus discus was not detected; no methionine was detected in the sample exposed to 20 psu, 25 psu, 30 psu and 40 psu after 120 h of exposure. Taurine:glycine ratio increased depending upon hyper-hypoosmotic condition as well as period of osmotic stress. These data indicate that taurine, glycine and methionine play important role in regulating osmotic stress in H. discus discus. This study suggesting that FAA analysis is a useful tool to diagnose osmotic stress to H. discus discus.

이 연구는 염분 변화가 둥근전복(Haliotis discus discus)의 유리아미노산(FAA)조성에 미치는 영향을 조사하고자 염분 15, 20, 25, 30, 35, 40 psu에 각각 24 h, 48 h, 120 h 노출 시킨 후 총 13가지 FAA의 함량 변화를 HPLC를 이용하여 분석하였다. 시료 중 15 psu에 노출된 전복 전량이 24 h 이내 폐 사하였고, 20 psu에 노출된 시료의 경우 전체 20개체 중 8개체가 48 h이내 사망하였다. FAA 중 Taurine, Glycine, Alaninr치 함량이 가장 높았으며, 이중 Taurin리 함량은 $114\;{\mu}mol/g$ dry tissue weight로써 전체 FAA의 77%를 점유하였다. 저염 및 고염 환경에 노출된 시료의 FAA함량은 분석 기간동안 감소하는 경향을 나타냈다. 그러나 Taurine의 농도는 노출 후 24 h이 경과하였을때까지 대조구 보다 낮았으나 노출 48 h 후부터는 저염 환경인 20 psu및 25 psu에서 증가하여 분석 종료 시점인 노출 120 h이 되었을 때까지 급격히 증가하였다. 반면 필수아미노산인 Methionine은 노출 48 h부터 20, 25, 40 psu에서 검출되지 않았고 노출 120 h 후에는 대조구를 제외한 전 실험 구에서 측정되지 않았다. Taurine 과 Glycine 비율(T:G ratio)은 저염환경에 노출된 시료에서 높게 나타났으며, 저염에 노출된 기간이 길어질수록 더욱 뚜렷한 경향이 관찰되었다. 이 같은 현상은 염분이 높은 환경에서도 나타났고 노출 시간이 지속 될수록 그 비율은 상승하였다. 이상의 결과는 FAA특히 Taurine, Glycine, Methionine 등이 둥근 전복의 삼투조절에 중요한 기능을 담당하는 것을 의미하며, FAA 분석은 염분 변화에 따른 둥근전복의 삼투조절 및 생리 특성을 이해하는데 유용한 방법임을 제시하였다.

Keywords

References

  1. Babarro, J.M.F., M.J.F. Reiriz, J.L. Garrido and U. Labarta, 2006. Free amino acid composition in juveniles of Mytilus galloprovincialis: Spatial variability after Prestige oil spill. Comp. Biochem. Phys. A, 145, 204−213
  2. Chiou, T.-K., M.-M. Lai and C.-Y. Shiau, 2001. Seasonal variations of chemical constituents in the muscle and viscera of small abalone fed different diets. Fish. Sci., 67, 146−156
  3. Cornet, M., 2006. Effects of seawater salinity fluctuations on primary tissue culture from the mussel Mytilus galloprovincialis potential application to the detection of seawater genotoxicity. Toxicol. Vitro, 20, 1500−1505
  4. Davenport, J., 1985. Osmotic control in marine animals. (in) M.S. Laverack (ed), Physiological Adaptations of Marine Animals. The Company of Biologists Limited. University of Cambridge, England, pp. 207−244
  5. Hatae, K., H. Nakai, A. Shimada, T. Murakami, K. Shirojo and S. Watabe, 1995. Abalone (Haliotis discus): seasonal variations in chemical composition and textual properties. J. Food Sci., 60, 32−35, 39
  6. Hosoi, M., S. Kubota, M. Toyohara, H. Toyohara and I. Hayashi, 2003. Effect of salinity change on free amino acid content in Pacific oyster. Fish. Sci, 69, 395−400
  7. Hummel, H., C. Amiard-Triquet, G. Bachelet, M. Desprez, J. Marchand, B. Sylvand, J. C. Amiard, H. Rybarczyk, R. H. Bogaards, J. Sinke and L. de Wolf, 1996. Free amino acids as a biochemical indicator of stress in the estuarine bivalve Macoma balthica. Sci. Total Environ., 188, 233−241
  8. Hwang, D.F., W.P. Liang, C.Y. Shiau, T.K. Chiou and S.S. Jeng, 1997. Seasonal variations of free amino acids in the muscle and viscera of small abalone Haliotis diversicolor. Fish. Sci., 63(4), 625−629
  9. Hyun, K.-H. and I.C. Pang, 1998. Abnormal low salinity waters around Cheju Island in summer. Bull. Mar. Res. Inst. Cheju Nat. Univ., 22, 69−78
  10. Kube, S., A. Sokolowski, J.M. Jansen and D. Schiedek, 2007. Seasonal variability of free amino acids in two marine bivalves, Macoma balthica and Mytilus spp., in relation to environmental and physiological factors. Comp. Biochem. Phys. A, 147, 1015−1027
  11. Lee, N.H., K.N. Han and K.S. Choi, 2004. Effects of salinity and turbidity on the free amino acid composition in gill tissue of the pacific oyster, Crassostrea gigas. J. Shellfish Res., 23, 129−133
  12. Litaay, M., S.S. De Silva and R.M. Gunasekera, 2001. Changes in the amino acid profiles during embryonic development of the blacklip abalone (Haliotis rubra). Aquat. Living Resour., 14, 335−342
  13. Livingstone, D.R., 1985. Biochemical measurements. (in) B.L. Bayne, D.A. Brown, K. Burnes, D.R. Dixon, A. Ivanovici, D.R. Livingstone, D.M. Lowe, M.N. Moore, A.R.D. Stebbing and J. Widdows (eds), The Effects of Stress and Pollution on Marine Animals. Praeger, New York, pp. 81−115
  14. Lynch, M.P. and L. Wood. 1996. Effects of environmental salinity on free amino acids of Crassostrea virginica Gmelin. Comp. Biochem. Phys., 19, 783−796
  15. Mai, K., G. He and W. Xu, 1998. Studies on postprandial changes of digestive status and free amino acids in the viscera of Haliotis discus hannai Ino. J. Shellfish Res., 17(3), 717−722
  16. Moon, J.H. and I.C. Pang, 2003. Inflowing of Yangtze coastal water in summer and its cause. Bull. Mar. Res. Inst. Cheju Nat'l. Univ., 27, 29−47
  17. Neff, J.M., R.E. Hillman, R.S. Carr, R.L. Buhl and J.I. Lahey, 1987. Histopathologic and biochemical responses in arctic marine bivalve mollusks exposed to experimentally spilled oil. Arctic 40 (Supp. 1), 220−229
  18. Pang, I.C. and K.H. Hyun, 1998. Seasonal variation of water mass distributions in the Eastern Yellow Sea and the Yellow Sea Warm Current. J. Kor. Soc. Oceanogr., 33, 41−52
  19. Powell, E.N., M. Kasschau, E. Chen, M. Koenig and J. Pecon, 1982. Changes in the free amino acid pool during environmental stress in the gill tissue of the oyster, Crassostrea virginica. Comp. Biochem. Phys., 71(4), 591−598
  20. Rittschof, D. and P. McClellan-Green, 2005. Molluscs as multidisciplinary models in environment toxicology. Mar. Poll. Bull., 50, 369−373
  21. Roesijadi, G., 1979. Taurine and glycine in the gills of the clam Protothaca staminea exposed to chlorinated seawater. Bull. Environm. Cont. Toxicol., 22, 543−547
  22. Soini J. and P. Rantamaki, 1985. Free amino acid pattern in blue mussel (Mytilus edulis) exposed to curde oil. Bull. Environm. Contam. Toxicol., 35, 810−815
  23. Sokolowski, A., M. Wolowicz and H. Hummel, 2003. Free amino acids in the clam Macoma balthica L. (Bivalvia, Mollusca) from brackish waters of the southern Baltic Sea. Comp. Biochem. Phys. A, 134, 579−592
  24. Soniat, T.M. and M.L. Koenig, 1982. The effects of parasitism by Perkinsus marinus on the free amino acid composition of Crassostrea virginica mantle tissue. J. Shellfish Res., 2(1), 25−28
  25. Souza, M.M. and E. Scemes, 2000. Volume changes in cardiac ventricles from Aplysia brasiliana upon exposure to hyposmotic shock. Comp. Biochem. Phys. A, 127, 99−111
  26. Viana, M.T., L.R. D'Abramo, M.A. Gonzalez, J.V. Garcia-Suarez, A. Shimada and C. Vasquez-Pelaez, 2007. Energy and nutrient utilization of juvenile green abalone (Haliotis fulgens) during starvation. Aquaculture, 264, 323−329
  27. Walther. M., 2002. Taurine in the marine hydrozoan Hydractinia echinata: stabilizer of the larval state? Comp. Biochem. Phys. A, 133, 179−190
  28. Won, S. W., S. J. Han, J. W. Kim and B. R. Kim, 2001. Report on the effects of high water temperature and low salinity on survival in juvenile Haliotis discus discus, Haliotis diversicolor and Batillus cornutus. Mar. Sci. Res. Rept. 59
  29. Won, S. W., S. J. Han, J. W. Kim and B. R. Kim, 2001. Report on the effects of high water temperature and low salinity on survival in juvenile Haliotis discus discus, Haliotis diversicolor and Batillus cornutus. Nat'l. Fish. Res. Devel. Insti., 59: 1−39
  30. Yancey, P.H., 2005. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol., 208, 2819−2830
  31. Zaccaron da Silva, A., J. Zanette, J.F. Ferreira, J. Guzenski, M.R. Marques and A.C. Bainy, 2005. Effects of salinity on biomarker responses in Crassostrea rhizophorae (Mollusca, Bivalvia) exposed to diesel oil. Ecotox. Environ. Safe., 62, 376−382
  32. Zurburg, W., H. Hummel, R. Bogaards, L. De Wolf and H. Ravestein, 1989. Free amino acid concentrations in Mytilus edulis L. from different locations in the southwestern part of the netherlands: Their possible significance as a biochemical stress indicator. Comp. Biochem. Phys. A, 93, 413−417 https://doi.org/10.1016/0305-0491(89)90102-8