Changes in Antioxidant Activity of Rehmannia radix Libosch with Heat Treatment

  • Woo, Koan-Sik (National Institute of Crop Science, Rural Development Administration) ;
  • Hwang, In-Guk (Department of Food Science and Technology, Chungbuk National University) ;
  • Song, Dae-Sik (Shinwon FI Co.) ;
  • Lee, Youn-Ri (Department of Food Science and Technology, Chungbuk National University) ;
  • Lee, Jun-Soo (Department of Food Science and Technology, Chungbuk National University) ;
  • Jeong, Heon-Sang (Department of Food Science and Technology, Chungbuk National University)
  • 발행 : 2008.12.31

초록

This study evaluated the effects of heat treatment on antioxidant activity of Rehmannia radix Libosch (RRL). RRL was heated at various temperatures ($110-150^{\circ}C$) for various times (1-5 hr), and the total polyphenol, flavonoid content, and antioxidant activity were investigated. With increased heating temperature and exposure time, total content of polyphenol, flavonoid, as well as antioxidant activity increased. The highest total polyphenol and flavonoid contents were 21.65 and 3.56 mg/g, respectively, these values were occurred after heating for 3 hr at $150^{\circ}C$ (RRL was 5.09 and 0.83 mg/g, respectively). The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity was highest value of 83.46% after heating for 3hr at $150^{\circ}C$. The 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) cation radical scavenging activity was highest value of 20.43mg ascorbic acid (AA) eq/g after heating for 2 hr at $150^{\circ}C$. There were highly significant differences in the total polyphenol, flavonoid content, and antioxidant activity among heating temperatures and times (p<0.001), with heating temperature having the greater effect.

키워드

참고문헌

  1. Zhu M, Hong SP, Kim CS, Lee JH. Determination methods of Rehmanniae radix by HPLC. Korean J. Herbol. 18: 203-209 (2003)
  2. Hasegawa TK, Koike S, Takahashi S, Ariyoshi U. Constituents of leaves and roots of kaikei jio (Rehmannia glutinosa Libosch. Forma hueichingensis Hsiao). Shoyakugaku Zasshi 36: 1-5 (1982)
  3. Chung IM, Kim JJ, Lim JD, Yu CY, Kim SH, Hahn SJ. Comparison of resveratrol, SOD activity, phenolic compounds, and free amino acids in Rehmannia radix under temperature and water stress. Environ. Exp. Bot. 56: 44-53 (2006) https://doi.org/10.1016/j.envexpbot.2005.01.001
  4. Kubo M, Asano T, Shiomoto H, Matsuda H. Studies on Rehmannia radix I effect of 50% ethanolic extract from steamed and dried Rehmanniae radix on hemoreology in arthritic and thrombostatic rats. Biol. Pharm. Bull. 17: 1282-1286 (1994) https://doi.org/10.1248/bpb.17.1282
  5. Kim NJ, Jung EA, Kim HJ, Sim SB, Kim JW. Quality evaluation of various dried roots of Rehmannia radix. Korean J. Pharmacogn. 31: 130-141 (2000)
  6. Ibarz A, Pagán J, Garza S. Kinetic models for color changes in pear puree during heating at relatively high temperatures. J. Food Eng. 39: 415-422 (1999) https://doi.org/10.1016/S0260-8774(99)00032-1
  7. Dewanto V, Wu X, Adom KK, Liu RH. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agr. Food Chem. 50: 3010-3014 (2002) https://doi.org/10.1021/jf0115589
  8. Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK. Steaming of ginseng at high temperature enhances biological activity. J. Nat. Prod. 63: 1702-1704 (2000) https://doi.org/10.1021/np990152b
  9. Yang SJ, Woo KS, Yoo JS, Kang TS, Noh YH, Lee J, Jeong HS. Change of Korean ginseng components with high temperature and pressure treatment. Korean J. Food Sci. Technol. 38: 521-525 (2006)
  10. Woo KS, Jang KI, Kim KY, Lee HB, Jeong HS. Antioxidative activity of heat treated licorice (Glycyrrhiza uralensis Fisch) extracts. Korean J. Food Sci. Technol. 38: 355-360 (2006)
  11. Kwon OC, Woo KS, Kim TM, Kim DJ, Hong JT, Jeong HS. Physicochemical characteristics of garlic (Allium sativum L.) on the high temperature and pressure treatment. Korean J. Food Sci. Technol. 38: 331-336 (2006)
  12. Woo KS, Yoon HS, Lee J, Jeong HS. Characteristics and antioxidative activity of volatile compounds in heated garlic (Allium sativum). Food Sci. Biotechnol. 16: 822-827 (2007)
  13. Woo KS, Hwang IG, Kim TM, Kim DJ, Hong JT, Jeong HS. Changes in the antioxidant activity of onion (Allium cepa) extracts with heat treatment. Food Sci. Biotechnol. 16: 828-831 (2007)
  14. Hwang IG, Woo KS, Kim TM, Kim DJ, Yang MH, Jeong HS. Change of physicochemical characteristics of Korean pear (Pyrus pyrifolia Nakai) juice with heat treatment conditions. Korean J. Food Sci. Technol. 38: 342-347 (2006)
  15. Choi Y, Lee SM, Chun J, Lee HB, Lee J. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of shiitake (Lentinus edodes) mushroom. Food Chem. 99: 381-387 (2006) https://doi.org/10.1016/j.foodchem.2005.08.004
  16. Tepe B, Sokmen M, Akpulat HA, Sokmen A. Screening of the antioxidant potentials of six Salvia species from Turkey. Food Chem. 95: 200-204 (2006) https://doi.org/10.1016/j.foodchem.2004.12.031
  17. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  18. Hwang IG, Woo KS, Kim DJ, Hong JT, Hwang BY, Lee YR, Jeong HS. Isolation and identification of an antioxidant substance from heated garlic (Allium sativum L.). Food Sci. Biotechnol. 16: 963-966 (2007)
  19. Forni LG, Mora-Arellano VO, Packer JE, Willson RL. Nitrogen dioxide and related free radicals: Electron-transfer reactions with organic compounds in solutions containing nitrite or nitrate. J. Chem. Soc. 2: 1-6 (1986)
  20. Bae SK, Lee YC, Kim HW. The browning reaction and inhibition on apple concentrated juice. J. Korean Soc. Food Sci. Nutr. 30: 6-13 (2001)
  21. Lim HK, Yoo ES, Moon JY, Jeon YJ, Cho SK. Antioxidant activity of extracts from dangyuja (Citrus grandis Osbeck) fruits produced in Jeju island. Food Sci. Biotechnol. 15: 312-316 (2006)
  22. Dewanto V, Xianzhong W, Liu RH. Processed sweet corn has higher antioxidant activity. J. Agr. Food Chem. 50: 4959-4964 (2002) https://doi.org/10.1021/jf0255937
  23. Jeong SM, Kim SY, Kim DR, Jo SC, Nam KC, Ahn DU, Lee SC. Effect of heat treatment on the antioxidant activity of extracts from citrus peels. J. Agr. Food Chem. 52: 3389-3393 (2004) https://doi.org/10.1021/jf049899k
  24. Stewart AJ, Bozonnet S, Mullen W, Jenkins GI, Michael EJ, Crozier A. Occurrence of flavonols in tomatoes and tomato-based products. J. Agr. Food Chem. 48: 2663-2669 (2000) https://doi.org/10.1021/jf000070p
  25. Velioglu YS, Mazza G, Gao L, Oomah BD. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agr. Food Chem. 46: 4113-4117 (1998) https://doi.org/10.1021/jf9801973
  26. Manzocco L, Calligaris S, Mastrocola D, Nicoli MC, Lerici CR. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci. Tech. 11: 340-346 (2001) https://doi.org/10.1016/S0924-2244(01)00014-0
  27. Nicoli MC, Anese M, Parpinel M. Influence of processing on the antioxidant properties of fruit and vegetables. Trends Food Sci. Tech. 10: 94-100 (1999) https://doi.org/10.1016/S0924-2244(99)00023-0