Proanthocyanidin Content and Antioxidant Characteristics of Grape Seeds

포도씨의 proanthocyanidin 함량 및 항산화 활성

  • Hwang, In-Wook (Department of Food Science and Technology, Kyungpook National University) ;
  • Lee, Hye-Ryun (Department of Food Science and Technology, Kyungpook National University) ;
  • Kim, Suk-Kyung (Department of Food Science and Technology, Kyungpook National University) ;
  • Zheng, Hu-Zhe (Department of Food Science and Technology, Kyungpook National University) ;
  • Choi, Jong-Uck (Department of Food Science and Technology, Kyungpook National University) ;
  • Lee, Sang-Han (Department of Food Science and Technology, Kyungpook National University) ;
  • Lee, Suk-Hee (Kyongbuk Agricultural Technology Administration) ;
  • Chung, Shin-Kyo (Department of Food Science and Technology, Kyungpook National University)
  • Published : 2008.12.31

Abstract

The proanthocyanidin content and antioxidant characteristics of seeds of grape cultivars were examined. Grape seeds were extracted in 70% acetone solution for 12 hr. The total phenolic content of the extracts ranged from 16.71 to 28.60 mg/100 g. The proanthocyanidin content ranged from 18.36 to 55.30 mg/100 g. The Jaok cultivar had the highest total phenolic and proanthocyanidin content, and showed the strongest antioxidant activity in the FRAP and DPPH assays. The total phenolic and proanthocyanidin content of grape seeds was correlated with their antioxidant capacities (r > 0.92). Acetone extracts of grape seeds could be effective antioxidant materials.

포도씨의 품종에 따른 총 페놀 함량과 proanthocyanidin의 함량과 항산화 활성을 알아보았다. 총 페놀 함량은 Folin-Ciocalteu법으로 측정하였고, $16.71\;{\sim}\;28.60\;mg$/100 g의 함량을 나타내었다. Proanthocyanidin 함량은 vanillin sulfuric acid법으로 측정하였고, $18.36\;{\sim}\;55.30\;mg$/100 g의 함량을 나타내었다. 품종 중에서 자옥 품종이 가장 높은 페놀 함량과 proanthocyanidin 함량을 나타내었다. 항산화 활성은 자옥 품종이 역시 가장 강한 항산화 활성을 나타내었다. 총 페놀 함량과 proanthocyanidin 함량은 항산화 활성과 높은 상관성을 보였다 (>0.92). 따라서 포도씨 추출물은 항산화 건강 기능성 식품의 소재로서 유용하게 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Kim, W.S. (1995) Grape processing industries. In New Cultivation Method of Grape. Kim W.S., ed. Munun Publishing Co, Seoul. pp. 58-92
  2. Sung, J.K. (1996) The present of grape processing industries. In Grape, from Plantation to Sales. Sung J.K., ed. The Nongmin Press, Seoul. pp. 23-41
  3. Yoo, M.A., Chung, H.K. and Kang, M.H. (2004) Evaluation of physicochemical properties in different cultivar grape seed waste. Food. Sci. Biotechnol., 13, 26-29
  4. Saito, M., Hosoyama, H., Ariga, T., Kataoka, S. and Yamaji, N. (1998) Antiulcer activity of grape seed extract and procyanidins. J. Agric. Food. Chem., 46, 1460-1464 https://doi.org/10.1021/jf9709156
  5. Jorge, M., Ricardo, D. S., Jacques, R., Veronique, C., Annie, C. and Michel, M. (1991) Procyanidin dimers and trimers from grape seeds. Phytochemistry, 30, 1259-1264 https://doi.org/10.1016/S0031-9422(00)95213-0
  6. Ricardo da Silva, J.M., Darmon, N., Fenandez, Y. and Mitjavila, S. (1991) Oxygen free radical scavenger capacity in aqueous models of deferent procyanidins from grape seeds. J. Agric. Food. Chem., 39, 1549-1552 https://doi.org/10.1021/jf00009a002
  7. Ariga, T., Koshiyama, I. and Fukushima, D. (1998) Antioxidative properties of procyanidins B-1 and B-3 from azuki beans in aqueous systems. Agric. Biol. Chem., 52, 2717-2722
  8. Murray, M. and Pizzomo, J. (1999) Procyanidolic oligomers. In: Murray M., Pizzomo J., eds. The Textbook of Natural Medicine. 2nd ed. London: Churchill Livingston; 899-902
  9. John, S., Jianmel, Y., Joseph, E. and Yukio, K. (2003) Polyphenolics in grape seeds-biochemistry and functionality. J. Med. Food., 6, 291-299 https://doi.org/10.1089/109662003772519831
  10. Buxiang, S. and Fukuhara, M. (1997) Effects of co-administration of butylated hydroxytoluene, butylated hydroxyanisole and flavonoide on the activation of mutagens and drug-metabolizing enzymes in mice. Toxicology, 122, 61-72 https://doi.org/10.1016/S0300-483X(97)00078-4
  11. Hirose, M., Takesada, Y., Tanaka, H., Tamano, S., Kato, T. and Shirai, T. (1998) Carcinogenicity of antioxidants BHA, caffeic acid, sesamol, 4-methoxyphenol and catechol at low doses, either alone or in combination and modulation of their effects in a rat medium-term multi-organ carcinogensis model. Carcinogenesis, 19, 207-212 https://doi.org/10.1093/carcin/19.1.207
  12. Namiki, M. (1990) Antioxidants/antimutagens in food. Crit. Rev. Food. Sci. Nutr., 29, 207-212
  13. Pokorny, J. (1991) Natural antioxidant for food use. Trends Food. Sci. Technol., 9, 223-227
  14. Jayaprakasha, G.K., Negi, P.S., Silder, S., Rao, L.J. and Sakariah, K.K. (2000) Antibacterial activity of citrus reticulata peel extracts. Z. Naturforsch., 55, 1030-1034
  15. Baoshan, S., Jorge, M., Ricardo, D.S. and Isabel, S. (1998) Critical Factors of Vanillin Assay for Catechins and Proanthocyanidins. J. Agric. Food. Chem., 46, 4267-4274 https://doi.org/10.1021/jf980366j
  16. Sato, M., Ramarathnam, N., Suzuki, Y., Ohkubo, T.,Takeuchi, M. and Ochi, H. (1996) Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J. Agric. Food. Chem., 44, 37-44 https://doi.org/10.1021/jf950190a
  17. Kang, M.H., Park, C.G., Cha, M.S., Seong, N.S., Chung, H.K. and Lee, J.B. (2001) Component characteristics of each extract prepared by different extract methods from by-products of glycyrrhizia uralensis. J. Korean Soc. Food. Sci. Nutr., 30, 138-142
  18. Benzie, I.F.F. and Stranin, J.J. (1996) The ferric reducing ability of plasma (FRAP) as a measure of "antioxidnat power": the FRAP assay. Anal. Biochem., 239, 70-76 https://doi.org/10.1006/abio.1996.0292
  19. Liu, T.Z., Chin, N., Kiser, M.D., and Bigler, W.N. (1982) Specific spectrophotometry of ascorbic acid in serum or plasma by use of ascorbate oxidase. Clin. Chem., 28, 2225-2228