DOI QR코드

DOI QR Code

Surface Reaction of Na0.5K0.5NbO3 Thin Films in Inductively Coupled BCl3/Cl2/Ar Plasma

BCl3/Cl2/Ar 플라즈마에서의 Na0.5K0.5NbO3 박막의 표면반응

  • Kim, Dong-Pyo (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Um, Doo-Seung (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Kim, Gwan-Ha (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Woo, Jong-Chang (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Kim, Chang-Il (School of Electrical and Electronics Engineering, Chung-Ang University)
  • 김동표 (중앙대학교 전자전기공학부) ;
  • 엄두승 (중앙대학교 전자전기공학부) ;
  • 김관하 (중앙대학교 전자전기공학부) ;
  • 우종창 (중앙대학교 전자전기공학부) ;
  • 김창일 (중앙대학교 전자전기공학부)
  • Published : 2008.12.31

Abstract

The etch of $(Na_{0.5}K_{0.5})NbO_3$ (NKN) thin film was performed in $BCl_3/Cl_2/Ar$ inductively coupled plasma. It was found that the 1sccm addition $BCl_3$ (5%) into $Cl_2/Ar$ plasma caused a non-monotonic behavior of the NKN etch rate. The maximum etch rate of NKN was 95.3 nm/min at $BCl_3$ (1 sccm)/$Cl_2$ (16 sccm)/Ar (4 sccm), 800 W ICP power, 1 Pa pressure and 400 W bias power. The NKN etch rate shows a monotonic behavior a s the bias power increases. The analysis of the narrow scan spectra of XPS for both a s-deposited and etched NKN films allowed one to assume ion assisted etch mechanism. The most probable reason for the maximum etch rate can be defined as a concurrence of chemical and physical etch pathways.

Keywords

References

  1. X. Wang, U. Helmersson, S. Olafsson, S. Rudner, L. Wernlund, S. Gevorgian, Appl. Phys. Lett. 73 (1998) 927 https://doi.org/10.1063/1.122040
  2. C.-R. Cho, J.-H. Koh, A. Grishin, S. Abadei, S. Gevorgian, Appl. Phys. Lett., 76 (2000) 1761 https://doi.org/10.1063/1.126159
  3. A. Shibuya, J. H Koh, A. Grishin, V. Kugler, D. Music, U. Helmersson, M. Okuyama, Mat. Res. Soc. Symp. Proc., 688 (2002) C7.7
  4. C. R Cho, I. Katardjiev, M. Grishin, A. Grishin, Appl. Phy. Lett., 80 (2002) 3171 https://doi.org/10.1063/1.1473689
  5. C. M. Kang, G. H. Kim, K. T. Kim, C. I. Kim, Ferroelectrics, 357 (2007) 179 https://doi.org/10.1080/00150190701542877
  6. S. J. Yun, A. Efremov, M. S. Kim, D. W. Kim, J. W. Lim, Y. H. Kim, C. H. Chung, D. J. Park, K. H. Kwon, 82 (2008) 1198
  7. E. Meeks, P. Ho, A. Ting, R. J. Buss, J. Vac. Sci. Technol. A, 16 (1998) 2227 https://doi.org/10.1116/1.581332
  8. H. S. Kim, G. Y. Yeom, J. W. Lee, T. I. Kim, J. Vac. Sci. Technol. A, 17 (1999) 2214 https://doi.org/10.1116/1.581749
  9. M. S. Kim, N. K. Min, S. J. Yun, H. W. Lee, A. Efremov, K. H. Kwon, Microele. Eng., 84 (2008) 348
  10. D. R. Lide, "Handbook of Chemistry and Physics", 79 CRC Press, 4-74, 1998
  11. J. Chastain, "Handbook of X-ray Photoelectron Spectroscopy", Perkin Elmer, 1992