DOI QR코드

DOI QR Code

In-situ Observation on Micro-Fractural Behavior and Strength Characteristics in Sn-4.0wt%Ag-0.5wt%Cu Solder Joint Interface

Sn-4.0wt%Ag-0.5wt%Cu 솔더 접합계면의 강도특성과 미세파괴거동에 대한 In-situ관찰

  • Lee, Kyung-Keun (School of Advanced Materials Engineering, Chonbuk National Univerisity) ;
  • Choi, Eun-Geun (School of Advanced Materials Engineering, Chonbuk National Univerisity) ;
  • Chu, Yong-Ho (Research Institue of Advanced Materials Development, Chonbuk National Univerisity) ;
  • Kim, Jin-Soo (School of Advanced Materials Engineering, Chonbuk National Univerisity) ;
  • Lee, Byung-Soo (School of Advanced Materials Engineering, Chonbuk National Univerisity) ;
  • Ahn, Haeng-Keun (School of Advanced Materials Engineering, Chonbuk National Univerisity)
  • 이경근 (전북대학교 공과대학 신소재공학부) ;
  • 최은근 (전북대학교 공과대학 신소재공학부) ;
  • 추용호 (전북대학교 신소재개발연구센터) ;
  • 김진수 (전북대학교 공과대학 신소재공학부) ;
  • 이병수 (전북대학교 공과대학 신소재공학부) ;
  • 안행근 (전북대학교 공과대학 신소재공학부)
  • Published : 2008.01.31

Abstract

The micro-structural changes, strength characteristics, and micro-fractural behaviors at the joint interface between a Sn-4.0wt%Ag-0.5wt%Cu solder ball and UBM treated by isothermal aging are reported. From the reflow process for the joint interface, a small amount of intermetallic compound was formed. With an increase in the isothermal aging time, the type and amount of the intermetallic compound changed. The interface without an isothermal treatment showed a ductile fracture. However, with an increase in the aging time, a brittle fracture occurred on the interface due mainly to the increase in the size of the intermetallic compounds and voids. As a result, a drastic degradation in the shear strength was observed. From a microshear test by a scanning electron microscope, the generation of micro-cracks was initiated from the voids at the joint interface. They propagated along the same interface, resulting in coalescence with neighboring cracks into larger cracks. With an increase in the aging time, the generation of the micro-structural cracks was enhanced and the degree of propagation also accelerated.

Keywords

References

  1. Y. Y. Wei and J. G. Duh, J. Mater. Sci. Mater. El., 9(5), 373(1998) https://doi.org/10.1023/A:1008940311075
  2. S. Choi, T. R. Bieler, J. P. Lucas and K. N. Subramanian, J. Electron. Mater., 28(11), 1209(1999) https://doi.org/10.1007/s11664-999-0159-y
  3. H. Oettel and R. Wiedemann, Surf. Coat. Technol., 76(1), 265(1995) https://doi.org/10.1016/02578-9729(50)25812-
  4. K. S. Ravichandran, Mat. Sci. Eng. A, 201(1-2), 269(1995) https://doi.org/10.1016/0921-5093(95)09773-2
  5. D. R. Frear and P. T. Vianco, Metall. Mater. Trans. A, 25(7), 1509(1994) https://doi.org/10.1007/BF02665483
  6. K. H. Prakash and T. Sritharan, Acta Mater., 49(13), 2481(2001) https://doi.org/10.1016/S1359-6454(01)00146-X
  7. G. Ghosh and M. J. Pfeifer, J. Electron. Mater., 30(9), 1145(2001) https://doi.org/10.1007/s11664-001-0142-8
  8. J. W. Yoon, C. B. Lee and S. B. Jung, Mater. Sci.Technol., 19(8), 1101(2003) https://doi.org/10.1179/026708303225003063
  9. D. R. Flanders, E. G. Jacobs and R. F. Pinizzotto, J.Electron. Mater., 26(7), 883(1997) https://doi.org/10.1007/s11664-997-0268-4
  10. M. McCormack, S. Jin, G. W. Kammlott and H. S. Chen, Appl. Phys. Lett., 63(1), 15(1993) https://doi.org/10.1063/1.109734
  11. W. Yang and R. W. Messler, J. Electron. Mater., 23(8), 765(1994) https://doi.org/10.1007/BF02651371
  12. B. S. Chiou, K. C. Liu, J.-G. Duh and P. S. Palanisamy, IEEE. Trans. CHMT, 13(2), 207(1990)
  13. Y. Wang and K. N. Tu, Appl. Phys. Lett., 67(8), 1069(1995) https://doi.org/10.1063/1.114467
  14. S. H. Lee, B. W. Park, J. H. J and D. Kwon, in Proceeding of the Tenth Conference on Mechanical Behaviors of Materals (Ansan, Korea, October 1996) P.521
  15. C. J. Chen and K. L. Lin, J. Electron. Mater., 29(8), 1007(2000) https://doi.org/10.1007/s11664-000-0165-6